Effect of Dynamite Explosion Work Noise on Behavior of Israeli Carp, *Cyprinus carpio* in the Cage of Aquaculture

Hyeon Ok SHIN
Dept. of Marine Production Management, Pukyong National University, Pusan, 608-737, Korea

This paper described the relationship between the behavior of the Israeli carp, *Cyprinus carpio* and the environmental noise level due to the dynamite explosion work. The experiment was conducted in the cage (110×4×Dm) of aquaculture located at Chungjoo Lake, Chechon, in 1997. The fish trajectory was obtained by the telemetry system in which a pulsed ultrasonic pinger (50 kHz, φ16×L70 mm) attached to the fish was tracked three dimensionally, and the underwater noise levels were measured. The results of the study were as follows: 1. The underwater noise levels in the normal blasting measured at a distance of 400 m from the source of noise increased by 40 dB (re 1 μPa) compared to the levels before explosion. The dominant frequency and the increased power spectrum level of the underwater noise by the explosion work were 75 to 100 Hz and 22.9 to 35.3 dB, respectively. 2. The underwater noise levels in the test blasting measured at a distance of 350 m from the source of noise increased by average 49.5 dB (re 1 μPa) compared to the levels before explosion. 3. The swimming area of the fish was reduced with the time after explosion, and after more than one hour the fish represented the similar swimming area and behavior to the status of right before explosion. 4. The swimming depth layer of the fish was mostly at the case at the sea surface less than 1.0 m except during explosion or right after of it. But the fish swam downward when an external stimulus like the explosion noise was given to the fish. 5. The average swimming speeds of the fish before, during and after the works were about 1.2 times, 1.9 times and 1.0 times of the body length, respectively, and the speed of the fish with explosion was faster 1.6 times than the speed without of that. Consequently, the explosion noise levels measured by this study were sufficiently high to affect the fish, and the heavy shock by the explosion works could produce a considerable unfavorable effects to the fish.

Key words: Explosion work, Underwater noise, Behavior of Israeli carp, Telemetry, Cage of aquaculture

장치 및 방법

1. 실험 현장의 환경
 이 연구에서 연금하는 2건의 발파작업은 연속하여 이루어진 것이 아니고 2년여의 간격을 두고 실시한 것이기 때문에, 이를 구분하기 위하여 1997년 5월 2일 실시된 지반공사기간 중에 실시된 발파를 '일반 발파'라고 하고, 지반공사를 끝내고 건물도 거의 완성한 시점에서 소음레벨을 확인한 목적으로 1999년 12월 22일에는 실험 발파를 '시험 발파'라고 하기로 한다.

 1) 일반 발파

 1997년 5월 2일 수행한 실험은 충북 제천시 청풍면 고리의 충주호에서 폭발점은 본래 저류작업장에서 폭발할 때 발생하는 수중소음이 어류의 행동에 미치는 영향을 조사하기 위
하여 실시하였다. 측정 당시 날씨는 맑고 바람이 약했으며, 수면은 간장하였다. 발파지점과 소용 측정점까지의 거리는 후용용GPS수신기(EAGLE, AccuNav Sport)를 사용하여 측정하였다.

2) 시험 발파
1999년 12월 22일 실시한 실험은 1997년 5월 2일 국민보안검정
을 통해 건설과 관련하여 이루어진 발파작업으로 인하여 발생하였던 수증소 화재가 어느 정도있는지를 확인할 목적으로 측정에
관한 법위의 조건에 의해 행해졌다. 발파는 1997년 5월 2일 발과가
있던 곳으로부터 200~300m 떨어진 발과에서 이루어졌다. 충주
호에 직 접의 발과 일부는 단단한 암석인 전암암(Gneiss)으로 되어
있었고, 나머지는 대부분 흙으로 덮여 있었고, 지표의 흙을 2~3m
과하에 가려진 변성암(Metamorphic rock)이 드러났다. 발파지점
에서 소용을 측정한 곳까지의 거리는 채과거리측정기를 사용하여
측정하였고, 측정한 지점에는 탈에 배달 스키로 툴을 설치하여
발과로서의 화전에 쉽게 알 수 있도록 하였다.

2. 전공작업 및 회억

1) 일반 발파

이 발과에 사용하였던 천공도면, 장악 단면도, 화약량 등은 사전
발과에서 사용하였던 것과 비슷하였다.

2) 시험 발파

전공작업은 서로 10m 정도 떨어진 2곳에서 이루어졌다. 단단한
암벽이 지상으로 드러난 지역은 지표에서 천공하였고, 지표가 흙
으로 덮여있는 부분은 포크레인 등으로 2~3m 높이를 쌓아
내어 변성암이 나타났을 때 천공하였다. 이 가운데에서 천공한
곳이 거의 충주호와 접해 있었으므로 지표가 수면보다 4~7m 높은
곳에 위치한 곳은 지표가 페막으로 덮여있었고, 그곳을 지반 A라
고 나타내었다. 다른 한 곳은 지표의 높이가 지반 B로 표기한
곳보다 조금 더 높았고, 수면로부터도 더 멀리 떨어진 곳에 위치
하였으며, 지반 A와 비교해보면 상당한 정도가 떨어진 변성암으로
이뤄진 곳을 지반 B로 표기하였다.

Fig. 1은 천공도면 및 장면 단면도를 나타낸 것이다.

Fig. 1에 서 발과에 사용한 화약은 절은 (주)한화의 Himite 5500으로
장약의 지름은 50mm이었으며, (주)한화의 HIDETO 절럼 (MS 사용)을 사용하였다.

일반 발과에서 사용한 총 화약량은 정확하게 알 수 없으나,
1996년 12월 28일~1997년 4월 16일까지는 사용한 화약량이 평균
200kg, 직경 35mm, 천공수 35공 (단, 구경 75mm, 천공간 1.2m, 천공량 6m)으로
발과하였다. 법위의 지표를 기준하여이므로, 이점과 비슷한 양의 화약과 천공량을 사용하여 발과를 이루어
졌음을 것으로 추정하였다.

발과에 사용한 총 화약량은 국민연금복지 ApplicationException을
사용하였습니다. 암과 동일하게 하였으나, 발과지점 측정은 발과지점
으로부터 200~300m 거리에 있는 국민연금복지시장의 건물과 30~
50m 거리에 있는 도로에 미칠 수 있는 영향을 감소시키기 위하여
 줄였다. 발과에 사용한 천공 제언은 Table 1과 같다.

3. 소용의 측정 및 분석

1) 일반 발파

발과작업에 따른 수증 소용 배달은 수증 응답계 (OKI, SW-10
07) 및 수증 청팀기 (OKI, ST-100)를 사용하여 현장에서 측정
하고, 소용 데이터는 스케트러 분석을 위하여 녹음기 (SONY,
TC-DSM)에 기록하였다. 수증 응답계에서 사용한 발과는 10Hz
의 HPF를 1kHz의 LPF였다. 수증소용은 정부의 상세에서 가두
리 양상자 직원의 입회에 측정하였으며, 수증소용기의 심도는 2
m로 하였다.

수증 소용의 스크트폰은 FFT 분석기 (A&D, 3125)로 분석하였고,
분석의 신뢰도를 높이기 위하여 사용한 데이터 평균 횟수는 10
회로 하였다.

소용의 측정 및 분석에 사용한 장비의 제안은 Table 2와 같다.

2) 시험 발파

시험 발과에 따른 수증 소용 배달은 수증 응답계 (OKI, SW-
1020) 및 수증 청팀기 (OKI, ST-1020)를 사용하여 측정하였고,
필터의 설정, 소용 데이터의 측정 및 분석 방법 등은 일반 발과에
서 사용한 방법과 거의 같다. 소용 판촉에 사용한 선탕은 소형
FRP 연료이었으며, 꽃으로 고정되어 있는 측정점들 중 를 매달았다.
수증소용은 신터 밴드를 장착시키고 정확한 상태에서 건설현
장 직원 및 가두리 압축설 비인 등의 입회에 측정하였고, 수증
表2. 블록 성능에 사용된 하수음 측정 장비의 사양

<table>
<thead>
<tr>
<th>장비</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>진공청력 (OKI, ST-1001)</td>
<td>주파수 범위: 10 Hz to 50 kHz (±5 dB)</td>
</tr>
<tr>
<td>수중 진공청력 (OKI, SW-1002)</td>
<td>수면 범위: 7 Hz to 90 kHz (±3 dB)</td>
</tr>
<tr>
<td>수중 진공청력 (OKI, ST-1020)</td>
<td>수면 범위: 10 Hz to 100 kHz (±3 dB)</td>
</tr>
<tr>
<td>진공청력 (OKI, SW-1020)</td>
<td>수면 범위: 10 Hz to 100 kHz (±3 dB)</td>
</tr>
<tr>
<td>레코더 (SONY, TC-D5M)</td>
<td>주파수 범위: 10 Hz to 16.5 kHz (±3 dB)</td>
</tr>
<tr>
<td>FEP-분석기 (AND, AD-325)</td>
<td>주파수 범위: 1 Hz to 100 kHz</td>
</tr>
</tbody>
</table>

청음기의 심도는 2 m로 하였다.

4. 시험의 유형과 실험
시험의 유형은 일반 발사에서만 실시하였으며, 시험 발사 때에는 하루간 만으로 가두기 양식의 잘된 상태였기 때문에 유형은 정확히 사용되지 않았다.

1) 진공청력 평가 (ultrasonic pinger)

시작에 사용한 심도형 평가 (Vemco, V16-3L)의 제원은 Table 3과 같다. 진공청력 평가는 free-run 탑업으로 전원을 끄며 정확한 시간 간격으로 초음파 진단 신호를 송신하는 장치이다. 평가를 사용하는 시스템에서는 일반적으로 평가가 언제 웅진 신호를 내는지 알 수 없지만, 평가로부터의 신호가 각각의 수산자의 수신된 기록까지의 시간차 즉, 수신시간차가 알 수 있다.

表3. 사용된 pinger의 사양

<table>
<thead>
<tr>
<th>사항</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Depth pinger</td>
</tr>
<tr>
<td>Freq. (kHz)</td>
<td>500</td>
</tr>
<tr>
<td>SL (dB re 1 μPa at 1 m)</td>
<td>146</td>
</tr>
<tr>
<td>PW (msec)</td>
<td>10</td>
</tr>
<tr>
<td>Max. Depth (m)</td>
<td>68</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>16×16×L62</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>17</td>
</tr>
<tr>
<td>Life (days)</td>
<td>6</td>
</tr>
</tbody>
</table>

SL: Source level, PW: Pulse width

(1)에서, 97.852는 평균에 사용된 압력센서의 인터페이스 값이다.

2) 바이오텔레메트리 시스템의 구성 및 배치

시험에 사용된 바이오태렌스마트 시스템은 자체 제작한 것으로 그 구성의 개략도를 나타내고 Fig. 2와 같다.

Fig. 2의 수막에서의 평가의 신호를 수신하면 이를 전자적인 신호로 바꾸어 진공청력 및 수신기로 보내며, 여기서는 비밀에 전기신호 를 선택, 공급, 파형적화하여 드린 timing 신호를 만들어 싱글보드 컴퓨터로 보내는 반면, 3개의 수막기로 동하여 초음파 진단 신호를 수산적 해마다 싱글보드 컴퓨터에 대하여 신호처리를 요구하는 인터럽트 신호를 보내는데, 싱글보드 컴퓨터에서는 인터럽트 신호가 있을 때마다 timing 신호로부터 수산시간차를 계산하며, 계산 결과는 RS-232C 신호로 출력한다. 노트북 컴퓨터에서는 이 신호를 입력하여 시험의 위치를 계산하고, 컴퓨터 화면에 나타내고, 데이터를 하드디스크에 저장한다.

한편, 수막기는 평가가 유효범위내에 있는 동안에는 어디서든지 수파할 수 있도록 무항정성으로 하였으며, 수막기는 자사작업 가두리 (L10×W4×H4 m)의 모래로 3곳에서 수파하고 1 m층에 내려
배치하였다.

3) 평가의 위치 계산
평가의 위치를 계산함에 있어 압력센서를 내장하고 있는 평가를 사용하면 3개의 수파기반으로도 높은 정확도의 3차원 위치를 구할 수 있다.

평가의 3차원 위치는 3개의 수파기에서 얻어지는 2개의 수신기 간차와 평가의 심도를 이용하여 Shin et al. (1990)의 영역선택법 알고리즘으로 구하였다.

4) 시험어 및 평가의 부착
현장에서 실험에 사용한 시험어는 실험 수역의 가두지에서 양식하고 있던 척어, Cyprinus carpio이었다(Fig. 3). 조사대상 가두지 양식장에서 키가 큰 녹색 유인으로 유인하여 폭대로 장아 올린 다음, 유리유리자를 대장한 조류와 평가를 시험어에 부착시켜 1997년 5월 2일 10시 30분경 동일한 가두에 발포하였다. 시험어에 대한 평가의 부착은 납시와 비주를 이용하여 시험어의 아랫부에 지는 방법으로 실시하였다.

Fig. 3. Photograph of a Israeli carp, Cyprinus carpio used in experiment.

결과 및 고찰

1. 소음
1) 일반 발파
Table 4는 1997년 5월 2일 청풍천 양수면 교류에 소재하는 가두지 양식장 인근에서 관광특화시설 및 관광휴게시설인 국민연금 복지마을 건립기한 안에 청풍천의 일부로 다이나마 이트를 발포하였을 때의 수중소음을 측정한 것이다. 발파가 없는 때에 가두지 안에서 측정한 수중소음은 평균 103.0 dB로 나타났다. 1차 발파 때에는 느급한 정도의 음압이 발생하지 예측할 수 있어 수중음압계의 감지기 레인지가 130 dB에 두어 120~140 dB의 음압을 측정할 수 있도록 하였으나, 발파음이 들린 13시 56분경의 수중 음압은 140 dB를 초과하였다. 이 때, 공중 폭발음은 두려움을 들했고, 발파공을 중심으로 환경자와 가까운 높이 소구치는 것을 품안으로 극히 수 있다. 2차 발파는 10분 정도 지난 14시 6분경에 이루어졌고, 수중음압계의 감지기 레인지의 150 dB에 두어 측정하였을 때 발파로 인한 수중소음 레벨은 143.0 dB로 나타났다.

Table 4. Measured underwater noise levels in the blasting, Choongjoo Lake on May 2, 1997

<table>
<thead>
<tr>
<th>Distance (m) from source of noise</th>
<th>Underwater noise levels (dB re 1μPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before explosion</td>
</tr>
<tr>
<td>400</td>
<td>102.5</td>
</tr>
<tr>
<td></td>
<td>104.0</td>
</tr>
</tbody>
</table>

2차 발파 때의 공중 폭발음은 1차보다 약했고, 환경자의 소음이론에도 다가지 못할 수 있었다. 발파로 인한 수중소음 레벨의 증가량은 40.0 dB이었다.

Fig. 4는 발파작업이 있으면 발파작업 중의 수중소음을 파워 스펙트럼을 상대적인 값으로 나타낸 것이다. 그림에서 실선으로 나타낸 것은 발파 전의 수중소음에 대한 스펙트럼이고, 실선 위에 삼각형과 원으로 표시된 것은 각각 1차 발파와 2차 발파에 대한 수중소음의 스펙트럼을 나타낸 것이다.

Fig. 4에서 발파작업 소음의 탈리효과가 그 높이 수중소음의 파워스펙트럼 레벨의 증가량을 살펴보면, 탈리효과는 75~100 Hz이상 증가량은 22.9~35.3 dB이었다.

Fig. 4. Comparison between relative power spectrum levels of the underwater noise without and within the dynamite explosion work.
Table 5. Measured underwater noise levels in the test blasting, Choongoo Lake on December 22, 1999

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Serial No.</th>
<th>Underwater noise level (dB re 1 Pa) Before blasting</th>
<th>Blasting</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>95.098.0 (143.0) Ground A (143.0153.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>2</td>
<td>95.0~98.0 (151.0) Ground A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>95.098.0 (153.0) Ground B (154.0156.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>95.0~98.0 (140.0) Ground B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>95.098.0 (143.0) Ground A (144.0146.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>96.5 >146.0 (148.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice: The values in the () of noise level denote estimated one.

153.0 dB를 초과한 것으로 나타났다. 지시자들이 측정 레이저를 초과하는 습도는 1차 발사에 비하여 훨씬 적절하여 이 때의 수중소음 레벨은 154.0~155.0 dB로 추정된다. 4차 발사는 12시 25분에 있었고, 측정 레이저를 160에 통상에서 측정한 수중소음 레벨은 140.0 dB이었다. 5차 발사는 12시 35분에 이루어졌고, 측정 레이저를 140에 통상에서 측정한 수중소음 레벨은 143.0 dB로 추정되었다. 지시자들이 이의 조사 결과를 고려하면 이때의 수중소음 레벨은 140.0~146.0 dB로 추정된다.

이 시험 발사에서 사용한 발사장 하위행은 1997년 5월 2일의 일반 발사에서 사용한 하위행보다 적었음에도 불구하고 발사작업으로 인한 수중소음은 발사의 짧을 때에 비하여 43.5~56.5 dB 증가하였으며, 평균적으로 49.5 dB (추정치를 고려하면 51.8 dB)의 손실값을 나타내었다.

2. 유성향동

발사작업에 따른 소음 및 강한 외부 자극이 주어졌을 때의 시험에서의 수중향동은 초음과 평가를 사용한 바이오테러디 기법으로 측정하였다.

발사 전후한 80분간의 데이터를 10분 간격으로 분석한 시험의 유성향동 분포, 평균 유성향동, 수직 유성향동은 Fig. 5와 같이. 평면도에서의 H0~H2 및 측면도의 H0~H1은 각각 수거기를 나타내며, 점선으로 도려내는 사각형은 가용을 그림을 표현하고 있다. 그리고, 유성향동을 설명하는 예리리를 도출하기 위하여 평면도에서는 가로10×세로4m인 가로무리와 가로5×세로2m 크기의 정사각형으로 4등분하여, H2의 정사각형을 2구간, H1의 정사각형을 3구간, H2의 정사각형을 4구간으로 구분하기로 한다. 또한, 측면도에서는 시험의 유성 심도 z (m)의 3개로 나누었으나 0.5m 간은 표준, 0.5m > z > 1.5m를 측정으로 구분하기로 한다. 평면도에서 발사 현장은 대체로 가두리 중심에 서서 300° 방향에 위치하고 있었다.

Fig. 5에서, 발사작업을 시작하기 전인 13:30~13:40의 평균 유성향동은 0.34 m/sec이었다. 유성향동을 보면, 평균적으로는 대체로 1구간, 3구간, 4구간에 98.0%가 분포하였고, 이 가운데 49.8%가 4구간에 분포하였으며, 수직적으로는 94.7%가 표층에 위치하였다.

13:50~14:00에는 1차 발사가 있었던 시점에서, 평균 유성향동은 이전 시간대보다 약간 증가한 0.35 m/sec을 나타내었다. 유성향동도 평균적으로는 대체로 1구간, 3구간, 4구간에 93.3%가 분포하였고, 이 가운데 38.7%가 4구간에 위치하였으며, 수직 적으로는 상하향동이 활발하였고 89.6%가 표층에 분포하였다. 2차 발사가 있었던 14:00~14:10에는 평균 유성향동이 0.46 m/sec으로 가장 희박하게 나타났다. 유성향동을 보면, 평균적으로는 4구간의 구 간에 결합 유성향동을 보였으며, 수직적으로는 표층에서 매우 높은 비율이 12.8%로 이전 시간대보다 증가하였다.

발사 이후의 시간대인 14:10~14:20에는 평균 유성향동도 0.30 m/sec으로 2차 발사 때보다 금속이 감소하였고, 유성향동 평균적으로는 발사 지점에서 말리는 쪽으로 이동하게 되었고, 유성향도가 줄어들면서 수직적으로도 이동한 비율이 증가하였다. 14:20 이후에는 평균 유성향동감이 점차 감소하는 경향을 보였고, 유성향동도 평균적으로는 1구간과 4구간에 주로 분포하다가 시간이 지남에 따라 조금씩 유성향이 벗어나는 경향을 보였으며, 수직적으로는 시간 경과에 따라 유성향도가 상승하는 경향이 있었고, 발사 후 30분이 경과한 시점부터는 거의 수면까지까지 유성향동이 후퇴하였다.

Fig. 6은 경구시간에 따른 유성향동을 나타낸 것이다.

Fig. 6에서, 1차 발사 이후의 2~3분간의 유성향동은 발사 전에 비하여 약간 증가한 틈새가 두드러지게 구분되었다. 그러나, 2차 발사 시점인 14:04부터 2~3분간의 유성향동은 발사 전에 비하여 약간의 중심에 비하여 약간을 얻는 것이다.

Fig. 7은 Fig. 6의 원측을 2분 간격으로 평균한 유성향동을 나타낸 것이다. 이 그림의 가로축에서 경구시간 0은 무작 시간이 각 시간 13:30을 나타내며, 1차 발사는 경구시간 26분에 있었고, 2차 발사는 경구시간 34분에 있었다.

Fig. 7에서, 발사 전후한 3분간의 유성향동을 살펴보면 1차 발사시에는 유성향동은 0.44 m/sec이었으며 2차 발사는 0.60 m/sec으로 유성향동은 급격한 변화가 나타나있으며, 이것은 스피커 레벨의 변동과도 직접적인 연관이 보였다. 발사시의 평균 유성향동은 0.52 m/sec (최대 0.99m) 발사 하차작업이 없을 때의 평균 유성향동은 0.32 m/sec (최대 1.11m)였으며, 발사전의 시점의 평균 유성향동은 발사 하차작업이 없을 때에 비하여 약 1.6배 높게 나타난다.

Fig. 8은 Fig. 5의 수직적인 유성향동의 표층, 중층, 저장 구간으 로 나누어 각각의 발생시간을 나타낸 것이다. 이 그림의 가로축은 13:30부터 경구생 시간을 나타낸 것이다.

Fig. 8에서 경구시간 2분~26분에 시점이 표층, 중층, 저장 구간으로 나누어 각각의 발생시간을 나타낸 것이다. 이 그림의 가로축은 13:30부터 경구생 시간을 나타낸 것이다.
Fig. 5. Behavior of the Israeli carp by the time which is related to the frequency of the explosion work. (a) swimming speed, (b) distribution of horizontal behavior, (c) distribution of vertical behavior.

26분~46분에는 각각 22%, 76.1%, 21.7%로 나타났으며, 경과시간 46분~80분에는 각각 76.3%, 21.8%, 1.8%로 나타났다. 이 수치로 부터 알 수 있듯이 측정 초기에는 주로 중층이나 표층에 머물렀던 시험어가 1차 발파와 2차 발파가 있었던 경과시간 26분과 34분 이후 46분경까지는 다른 시간대에 비하여 저층으로 도피해있는 행동이 많이 나타났으며, 그 이후부터는 표층으로 부상하여 행동하는 경우가 많은 것으로 나타났다.

따라서, 시험어에 초음파 평가를 부착시켜 수중에서의 유영속도나 행동 등을 측정하고 분석하여 본 결과, 이 연구에서 측정한 발파작업 소음은 가두리 양식장에서 사육하고 있던 시험어에 대하여
Fig. 6. Swimming speeds of the fish by the time.
Fig. 7. Two minutes averaging speeds of the fish by the time elapsed.

![Swimming speed vs Time elapsed graph]

Fig. 8. Frequency of swimming depth layer appeared of the fish by the vertical division.

생태적으로 좋지 않은 영향을 미칠 수 있을 것으로 사료된다.

요 악

발파작업으로 인한 소음 레벨과 시험어의 행동과 관계를 구명하기 위하여 1997년 충북 제천시에 있는 충주호의 가두리 양식장에서, 발파에 따른 수증소음 레벨을 측정하고, 그 때의 시험어 (항어, 체장 28 cm)의 행동을 바이오델레이트기법으로 3차원으로 추적한 결과를 요약하면 다음과 같다.

1. 소음원으로부터 400 m 거리에서 측정한 발파 중의 수증소음 레벨은 발파 전에 비하여 40 dB (re 1 μPa) 증가하였다. 발파작업 소음의 편파주파수는 75~100 Hz였고 파워 스펙트럼 레벨의 중간값은 22.9~35.3 dB이었다.

2. 소음원으로부터 350 m 거리에서 측정한 시험 발파에 의한 수증소음 레벨은 발파가 없을 때에 비하여 평균 49.5 dB 증가하였다.

3. 발파 후 1시간까지는 유영 범위가 발파 전에 비하여 감소하였으며, 그 이후에는 유영 범위가 행동이 발파 직전과 비슷한 상태를 나타내었다.

4. 발파 전에는 주로 중층이나 표층에 이동했던 시험어가 1차 발파 및 2차 발파가 있었던 경고시간 26분과 34분 이후 46분까지는 다른 시간대에 비하여 체중으로 도피해 있는 행동이 많이 나타나였으며, 그 이후부터는 표층으로 부상하여 유영하는 경우가 많은 것으로 나타났다.

5. 발파전, 발파 중, 발파 후의 시험어의 평균 유영 속도는 각각 0.33 m/sec (체장의 1.2배), 0.52 m/sec (체장의 1.9배), 0.29 m/sec (체장의 1.0배)이었고, 발파 중의 유영속도는 발파작업이 없을 때에 비하여 약 1.6배 빠르게 나타났다. 따라서, 이 연구에서 측정한 발파작업 소음은 가두리 양식장에서 사육하고 있던 시험어에 대하여 생태적으로 좋지 않은 영향을 미칠 수 있을 것으로 사료된다.

감사의 글

실험장의 제공과 시험 발파의 적극 협조하여 주신 정홍택산장님과 수용 납재에 시험발파 일정에 맞추기 위하여 첩불작업에 어려웠던 관계자, 발파작업을 승인해 주신 주재부재청지방청장 이하 직원 여러분, 그리고 초기의 협장 총장에서 수고하였던 부정해방박재현군에게 감사를 표합니다.

참고 문헌

2000년 5월 22일 접수
2000년 7월 24일 수리