Purification and Properties of Cycloextrin Glucanotransferase Synthesizing 2-O-α-d-Glucopyranosyl L-Ascorbic Acid from Paenibacillus sp. JB-13

BAE, KYUNG-MI1, SUNG-KOO KIM2, IN-SOO KONG2, AND HONG-KI JUN1*

1Division of Biological Sciences, Pusan National University, Pusan 609-735, Korea
2Department of Biotechnology and Bioengineering, Pukyung National University, Pusan 608-737, Korea

Received: September 29, 2000
Accepted: January 22, 2001

Abstract A Gram-positive bacterium (strain JB-13) that was isolated from soil as a producer of cycloextrin glucanotransferase (CGTase) [EC 2.4.1.19] was identified as Paenibacillus sp. JB-13. This CGTase could catalyze the transglycosylation reaction from soluble starch to l-ascorbic acid (AA). A main product formed by this enzyme with α-glucosidase was identified as 2-O-α-d-glucopyranosyl l-ascorbic acid (AA-2G) by the HPLC profile and the elemental analysis. CGTase was purified to homogeneity using ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Sephadex A-50, and gel chromatography on Sephacyl S-200HR. The molecular weight was determined to be 66,000 by both gel chromatography and SDS-PAGE. The isoelectric point of the purified enzyme was 5.3. The optimum pH and temperature were pH 7.0 and 45°C, respectively. The enzyme was stable in the range of pH 6–9 and at temperatures of 75°C or less in the presence of 15 mM CaCl2, HCl, MnCl2, Ag+, and Cu2+ all strongly inhibited the enzyme's activity.

Key words: Cycloextrin glucanotransferase, 2-O-α-d-glucopyranosyl l-ascorbic acid, Paenibacillus sp. JB-13

Recently, we found that CGTase from Paenibacillus sp. JB-13 produced 2-O-α-d-glucopyranosyl L-ascorbic acid (AA-2G) efficiently and regioselectively. α-Glucosidase and CGTase from microorganisms, animals and plants, rice seed [24], and mammals [25, 41] can catalyze to form AA-2G [1]. AA-2G is a novel vitamin C derivative synthesized from AA and maltose or oligosaccharide by the transglycosylation enzymes such as CGTase [1, 24, 25, 33, 41]. In contrast to AA, the glucose conjugate of AA shows a high resistance to thermal and oxidative degradations in an aqueous solution [1, 24, 25, 38, 39, 42]. The ascorbate moiety in this glucoside is fully protected from oxidation if the bond is not cleaved. However, AA-2G is hydrolyzed to AA and glucose by the action of mammalian α-glucosidase [25] that has biological activities such as AA in vivo [42] and in a tissue culture [23]. In addition, AA-2G acts as an effective antiscorbutic vitamin in guinea pig [36, 42] and stimulates collagen synthesis in human skin of fibroblasts in vitro [42]. So far, a number of 2-O-monoalkyl substituted derivatives of AA, including its sulfate [20, 21], phosphate [21] and methyl ether [17], have been demonstrated to be stable in vitro and have shown nonreducing activity. Among them, ascorbic acid 2-O-sulfate (AA-2S) [3, 28, 30] and ascorbic acid 2-O-methyl ether (AA-2M) [5] were found as naturally occurring metabolites of AA. However, they were devoid of a substantial vitamin C activity in monkeys and guinea pigs [12, 18]. On the other hand, ascorbic acid 2-O-phosphate (AA-2P) exerted an antiscorbutic activity in monkeys and guinea pigs [19], although it had not been unequivocally identified as a metabolite of AA in these animals. Moreover, AA-2P did not enhance the synthesis of collagen more than AA-2G in cultured human skin fibroblasts. AA-2P was not persistent because AA was released very rapidly from AA-2P by hydrolysis and the hydrolyzed AA was unstable in the culture medium [13]. However, the rate of hydrolysis of AA-2G in the fibroblasts was more slow. These aspects of AA-

*Corresponding author
Phone: 82-51-510-2270; Fax: 82-51-513-4532;
E-mail: hkjun@hyowon.cc.pusan.ac.kr
2G provide a further basis for its use as an effective pharmacological agent and/or as a promising food additive. Therefore, to efficiently and abundantly mass produce AA-2G, the first step is the purification and characterization of CGTase. In this study, we describe the purification and enzymatic properties of the CGTase from *Paenibacillus* sp. JB-13 for the production of AA-2G.

Materials and Methods

Materials
Soluble starch was purchased from Wako Pure Chemical Industries Co. Ltd. (Osaka), glucoamylase from *Rhizopus* mold, rice seed α-glucosidase, ascorbate oxidase (ASOD, EC 1.1.3.3), sodium ascorbate, α-CD, β-CD, γ-CD, sodium dodecyl sulfate, ethylenediaminetetraacetic acid, and Sephacryl S-200HR were obtained from Sigma Co. (St. Louis, MO, U.S.A.). DEAE-Sephadex A-50 was obtained from Pharmacia Fine Chemicals. AA-2G was obtained from Professor T. Sakai at Kinki University. All other chemicals were of the analytical grade.

Bacterial Strain and Culture Conditions
The bacterium strain No. 13 with CGTase activity was isolated from soil and used throughout this study. The bacterium was identified as *Paenibacillus* sp. JB-13, as described under Results and Discussion. The medium used for the production of CGTase was composed of 1% soluble starch, 1% yeast extract, 1% Na₂CO₃, 0.1% K₂HPO₄, and 0.02% MgSO₄·7H₂O. The culture was carried out at pH 7.0 and at 37°C for 48 h.

Assay of CGTase
CGTase activity was determined by the glucoamylase method that was introduced by Yu et al. [43], with some modifications. Using sucrose and α-CD as substrates, the coupling activity of CGTase was assayed by measuring the formation of glucose. The reaction mixture containing the enzyme, 5 mM of α-CD, and 25 mM of sucrose in 100 mM of phosphate buffer (pH 7.0) was incubated at 55°C for 1 h. The reaction was stopped by immersion in a boiling water bath for 5 min. Glucoamylase (10 units/ml) in 0.5 M of acetate buffer (pH 4.5) was added. After digestion with glucoamylase (30 min, 55°C), reducing sugar was measured by following the Somogyi-Nelson [27] method. One unit of the enzyme activity was defined as the amount of the enzyme produced as 1.0 μmol of glucose per min under the conditions employed.

Production and Detection of AA-2G
The reaction mixture was composed of 7% soluble starch, 3% sodium ascorbate, and 2,000 units/ml of CGTase in a total volume of 1.5 ml with 100 mM of acetate buffer (pH 6.0), and incubated at 55°C for 24 h. To hydrolyze AA-2-oligosaccharides produced by CGTase, glucoamylase (20 units/ml) was added to the reaction mixture of CGTase and incubated at 55°C, pH 4.5, for 24 h. Assays for AA and AA derivatives were carried out by HPLC. HPLC was performed in a μBondapak C₁₈ (3.9×300 mm) column with the mobile phase of 0.1 M potassium phosphate-phosphoric acid (pH 2.0) at a flow rate of 0.5 ml/min.

Purification of CGTase
All operations were carried out at 4°C unless otherwise stated.

Step 1: Ammonium sulfate fractionation. Ammonium sulfate was added to 10% saturation level, and the precipitate was removed by centrifugation at 20,000×g for 30 min. Solid ammonium sulfate was further added to the supernatant to 50% saturation. This precipitate was collected by centrifugation and dissolved in 50 mM of Tris-HCl buffer (pH 8.0). The enzyme solution was dialyzed against 500 volumes of the same buffer for 24 h with three changes.

Step 2: DEAE-Sephadex A-50 column chromatography. The enzyme solution was applied to a DEAE-Sephadex A-50 column (1.5×15 cm) equilibrated with 50 mM of Tris-HCl buffer (pH 8.0). After the column was washed with the same buffer, the enzyme was eluted with a linear gradient formed from two buffer solutions containing 0 and 1.0 M of NaCl. The active fractions were pooled and concentrated by ultrafiltration (ZM 50 membrane; Amicon Co.).

Step 3: Sephacryl S-200HR column chromatography. The concentrated enzyme was applied to a Sephacryl S-200HR column (1.5×75 cm) previously equilibrated with 50 mM of potassium phosphate buffer (pH 7.0). Elution was carried out with the same buffer, and the active-peak fractions were pooled and concentrated by the ultrafiltration process. To eliminate any remaining contaminants, chromatography on Sephacryl S-200HR was repeated. The active fractions were combined and concentrated with an ultrafiltration membrane, and then used as the purified enzyme source.

Test for Homogeneity of the Enzyme
Native-polyacrylamide gel electrophoresis (PAGE) was performed using a 7% polyacrylamide gel with a pH 6.8 buffer system. SDS-PAGE with 10% polyacrylamide gel was performed by the procedure described by Laemmli [14]. The protein was stained with 2.5% Coomassie Brilliant Blue G-250.

Determination of Molecular Weight and Isoelectric Point
The molecular weight of CGTase was determined by gel filtration on a Sephacryl S-200HR column (1.5×75 cm). Blue dextran (MW 2,000,000), B-amylase from sweet potato (MW 200,000), alcohol dehydrogenase from yeast
(MW 150,000), bovine serum albumin (MW 66,000) and α-chymotrypsinogen (MW 25,000) were used as standard proteins. The subunit molecular weight was estimated by SDS-PAGE using a 10% polyacrylamide gel. Phosphorylase (MW 97,000), fructose-6-phosphate (MW 84,000), bovine serum albumin (MW 66,000), glutamic dehydrogenase (MW 55,000), ovalbumin (MW 45,000), and glyceraldehyde-3-phosphate dehydrogenase (MW 36,000) were used as standard markers (Sigma Chemical Co.). Isoelectric focusing was conducted with a 7.5% polyacrylamide gel containing 2.4% Ampholine (pH 3.0-10.0) for 5 h at a constant voltage of 200 V.

Kinetic Parameters

Kinetic parameters of the purified enzyme for CD synthesis, coupling, and CD opening were determined. CD synthesis activity was assayed using 0.5-10% (w/v) soluble starch as a substrate by measuring the production of CD by HPLC. Coupling activity of CGTase was assayed by following the standard method of CGTase that was mentioned in Materials and Methods, using 20 mM of sucrose, 1-20 mM α-CD, 1-20 mM β-CD, and 5-100 mM γ-CD. Ring opening activity of CGTase was assayed using α-, β-, and γ-CDs as substrates by measuring the increase in reducing power; the reaction mixture containing the enzyme, 1-35 mM α-, β-, and γ-CDs in 100 mM phosphate buffer (pH 7.0) and 20 units of glucoamylase was incubated at 45°C for 30 min. Reducing sugar was measured by the Somogyi-Nelson method [27]. Experimental data were fitted to a nonlinear least-squares program and also represented as Lineweaver-Burk plots to yield Kₘ and Vₘₐₓ values.

Determination of Protein

The concentration of protein was determined by the method of Lowry [16] using bovine serum albumin as the standard. The protein concentration of column fractions was determined by measuring the absorbance at 280 nm.

Analysis of N-Terminal Amino Acid Sequence

The N-terminal sequence of the protein was determined using the automated Edman degradation with PerkinElmer Procise (U.S.A.). The amino acid sequences were compared with others in the NCBI database by using the Blast program.

RESULTS AND DISCUSSION

Identification of the Strain JB-13

The strain used in this work was a Gram positive, rod shaped, endospore-forming bacteria, catalase positive, and motility positive, but gas was not produced from glucose. Utilizations of glucose, sucrose, xylose, and mannitol were positive, but utilizations of inositol, arabinose, and inulin were negative. The strain hydrolyzed starch, gelatin, and casein and grew at pH 6.8 and 7% NaCl in nutrient broth as shown in Table 1. The TEM photo indicated a rod shape, as shown in Fig. 1. According to its morphological, cultural, and biochemical characteristics, the strain showed similarity to the Bacillus group, but a 90% similarity to Paenibacillus campanasensis was found by partial 16S rDNA sequence comparisons (data not shown). With these results and reference to Bergey's Manual of Determinative Bacteriology, 9th Edition and Bergey's Manual of Systematic Bacteriology Vol. 2, the strain used in this work was identified and tentatively named as Paenibacillus sp. JB-13.

AA-2G Production with CGTase

AA-2G production catalyzed by CGTase was carried out at pH 6.0 and 55°C using soluble starch as a substrate. Figure 2 shows a typical HPLC profile. A peak of AA-2G was observed just after a peak of AA (Fig. 2-B), by comparing the retention time of authentic AA-2G. The AA-2G, heated for 30 min in boiling water, showed the same peak height to that of AA-2G without the heat treatment, which
indicates heat stability of AA-2G (Fig. 2C). When the sample was treated with 5 units of ASOD at 25°C for 10 min, it was completely resistant to oxidation (Fig. 2D). Therefore, AA-2G is stable to ASOD-catalyzed oxidation, as reported earlier [25], while AA is susceptible to the enzymatic oxidation in water under aerobic condition. As AA-2G can be effectively hydrolyzed in vitro by rice seed α-glucosidase [24], the HPLC retention patterns before and after α-glucosidase hydrolysis of the sample were examined. After the treatment of the sample with 1 unit of rice seed α-glucosidase in 0.02 M of acetate buffer (pH 5.5) at 37°C for 30 min, two peaks corresponding to AA and glucose were produced, while the peak corresponding to AA-2G almost disappeared (Fig. 2E). Furthermore, after a mild acid hydrolysis with 1 N HCl at 100°C for 3 min, the peak height of AA increased, as shown in Fig. 2F, thus identifying the compound produced by Paenibacillus sp. JB-13 to be AA-2G by CGTase.

Purification of the Enzyme
The purification of the enzyme is summarized in Table 2. The enzyme was purified to homogeneity from the cultural supernatant of Paenibacillus sp. JB-13 by ammonium sulfate fractionation, DEAE-Sephadex A-50, and Sephacryl S-200HR column chromatographies. The elution patterns on the DEAE-Sephadex A-50 and Sephacryl S-200HR column chromatographies are shown in Figs. 3 and 4, respectively. The elution profile on the final 2nd Sephacryl S-200HR column chromatography is shown in Fig. 5. The purified enzyme was homogeneous, evidenced by a single band on SDS/PAGE and native PAGE (Fig. 6) with a molecular weight of 66,000. By these purification procedures, the enzyme was purified 305-fold with a yield of 14.5%.

N-Terminal Amino Acid Sequence
The N-terminal amino acid sequence of the purified JB-13 CGTase was compared to those of CGTase from various sources, as shown in Fig. 7. The sequence of JB-13

Table 2. Purification of the CGTase from Paenibacillus sp. JB-13.

<table>
<thead>
<tr>
<th>Step</th>
<th>Total activity (units)</th>
<th>Total protein (mg)</th>
<th>Specific activity (units/mg)</th>
<th>Yield (%)</th>
<th>Fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude extract</td>
<td>347,050.00</td>
<td>9,040.00</td>
<td>38.39</td>
<td>100.00</td>
<td>1.00</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ fractionation (10–50%)</td>
<td>252,959.29</td>
<td>312.96</td>
<td>808.28</td>
<td>72.89</td>
<td>21.05</td>
</tr>
<tr>
<td>DEAE-Sephadex A-50</td>
<td>239,272.55</td>
<td>186.19</td>
<td>1,285.10</td>
<td>68.94</td>
<td>33.47</td>
</tr>
<tr>
<td>1st Sephacryl S-200HR</td>
<td>76,464.37</td>
<td>8.77</td>
<td>8,718.86</td>
<td>22.03</td>
<td>227.11</td>
</tr>
<tr>
<td>2st Sephacryl S-200HR</td>
<td>50,638.92</td>
<td>4.32</td>
<td>11,721.97</td>
<td>14.59</td>
<td>305.34</td>
</tr>
</tbody>
</table>
Fig. 3. DEAE-Sephadex A-50 column chromatography of CGTase from *Paenibacillus* sp. JB-13.
Column size 1.5x15 cm; equilibrated with 50 mM Tris/Cl buffer (pH 5.0); eluted with 0–1.0 M NaCl linear gradient in the same buffer; fraction volume 7 ml; flow rate 0.6 ml/min.

Fig. 4. Sephacryl S-200HR column chromatography of CGTase from *Paenibacillus* sp. JB-13.
Column size 1.5x75 cm; equilibrated with 50 mM potassium phosphate buffer (pH 5.0); eluted with the same buffer; fraction volume 2 ml; flow rate 0.25 ml/min.

Fig. 5. 2nd-Sephacryl S-200HR column chromatography of the partially purified CGTase from *Paenibacillus* sp. JB-13.
Column size 1.5x7.5 cm; equilibrated with 50 mM potassium phosphate buffer (pH 7.0); eluted with the same buffer; fraction volume 2 ml; flow rate 0.25 ml/min.

Fig. 6. Electrophoretic analysis of the purified CGTase from *Paenibacillus* sp. JB-13.
(A) SDS-PAGE (10% gel); (B) Native-PAGE (7% gel).

Fig. 7. Comparison of the N-terminal sequences between JB-13 CGTase and other CGTases.
The highly homologous regions are shaded. Abbreviations: JB-13, *Paenibacillus* sp. JB-13; B. mac, *Bacillus macerans* [31]; B. lic, *B. licheniformis* [33]; 1011, alkalophilic *Bacillus* sp. 1011 [31]; T. the, *Thermoanaerobacterium thermosulfurigenes* [33]; B. ste, *B. stearothermophilus* [33].

CGTase showed a significant similarity to those of known CGTases, suggesting that archaeal CGTase has an evolutionary relationship to bacterial CGTase.

Effect of pH on Activity and Stability of CGTase
The optimum pH for CGTase was determined by using acetate buffer (pH 3 to 5), potassium phosphate buffer (pH 5 to 8), glycine-NaOH buffer (pH 8 to 10), and NaHPO4-NaOH buffer (pH 10 to 12) under the standard assay conditions. As shown in Fig. 8A, the enzyme was the most active at pH 7.0. The effects of pH on the stability of the enzyme are shown in Fig. 8B. After being incubated at various pHs at 37°C for 1 h, the residual activity was assayed at pH 7.0. The enzyme was stable between pH 6 and 9.

Effect of Temperature on Activity and Stability
The effect of temperature on enzyme activity was evaluated by the standard assay using the temperature range of 25–
80°C. The optimum temperature was 45°C in the absence or presence of 15 mM CaCl₂ (Fig. 9A). To check the thermal stability, the enzyme (in 100 mM phosphate buffer, pH 7.0) was incubated at various temperatures for 30 min, and the remaining activity was assayed by the standard method. The enzyme was stable at 55°C without 15 mM of CaCl₂ and at 75°C in the presence of 15 mM CaCl₂ (Fig. 9B). The addition of Ca²⁺ ions increased the heat stability of *Paenibacillus* sp. JB-13 CGTase. It was reported that the presence of substrate, product, or calcium ions enhanced the stability of CGTases [6]. Activities of CGTases from *Brevibacterium* [22] and *Bacillus coagulans* [2] were also reported to increase in the presence of calcium ions, however, no effect of calcium ions on the temperature stability of CGTase from *B. firmus* was reported [8].

Table 3. Effect of metal ions on the activity of CGTase from *Paenibacillus* sp. JB-13.

<table>
<thead>
<tr>
<th>Metal ions</th>
<th>0.1 mM</th>
<th>1.0 mM</th>
<th>10 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnCl₂</td>
<td>85.7</td>
<td>68.2</td>
<td>27.1</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>97.7</td>
<td>87.2</td>
<td>67.4</td>
</tr>
<tr>
<td>KCl</td>
<td>102.6</td>
<td>100.4</td>
<td>96.2</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>103.6</td>
<td>97.9</td>
<td>143.1</td>
</tr>
<tr>
<td>CdCl₂</td>
<td>101.1</td>
<td>106.2</td>
<td>93.0</td>
</tr>
<tr>
<td>BaCl₂</td>
<td>99.8</td>
<td>113.9</td>
<td>117.1</td>
</tr>
<tr>
<td>HgCl₂</td>
<td>102.6</td>
<td>100.2</td>
<td>0</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>101.9</td>
<td>105.8</td>
<td>66.1</td>
</tr>
<tr>
<td>AgNO₃</td>
<td>97.4</td>
<td>83.8</td>
<td>14.9</td>
</tr>
<tr>
<td>CoCl₂</td>
<td>86.6</td>
<td>97.6</td>
<td>146.1</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>98.1</td>
<td>98.7</td>
<td>4.7</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>107.0</td>
<td>114.7</td>
<td>171.4</td>
</tr>
<tr>
<td>NiCl₂</td>
<td>106.4</td>
<td>99.4</td>
<td>155.0</td>
</tr>
<tr>
<td>None</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The enzyme was dialyzed against 100 mM potassium phosphate buffer, pH 7.0, containing 20 mM EDTA, for 24 h with several changes, and then further dialyzed against 100 mM potassium phosphate buffer (pH 7.0), for 24 h with several changes. The enzyme was preincubated with various metal ions for 30 min at 37°C. After incubation, the mixture was subjected to CGTase assay.

Effect of Metal Ions and Inhibitors

The enzyme was incubated with various metal ions in 100 mM of potassium phosphate buffer (pH 7.0) at 37°C for 30 min, and the remaining activity was measured under the standard assay conditions. As shown in Table 3, Mg²⁺, Ba²⁺, Co²⁺, Ca²⁺, and Ni²⁺ promoted the enzyme activity. The enzyme activity

Table 4. Effect of inhibitors on the activity of CGTase from *Paenibacillus* sp. JB-13.

<table>
<thead>
<tr>
<th>Reagents</th>
<th>0.1 mM</th>
<th>1.0 mM</th>
<th>10 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium persulfate</td>
<td>88</td>
<td>97</td>
<td>53</td>
</tr>
<tr>
<td>l-Cysteine hydrochloride</td>
<td>102</td>
<td>104</td>
<td>65</td>
</tr>
<tr>
<td>N-Ethylmaleimide</td>
<td>107</td>
<td>103</td>
<td>80</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetic acid</td>
<td>104</td>
<td>86</td>
<td>75</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>99</td>
<td>103</td>
<td>87</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate</td>
<td>95</td>
<td>83</td>
<td>10</td>
</tr>
<tr>
<td>NaN₃</td>
<td>96</td>
<td>98</td>
<td>66</td>
</tr>
<tr>
<td>NaCN</td>
<td>104</td>
<td>102</td>
<td>83</td>
</tr>
<tr>
<td>Na₃HAsO₄</td>
<td>98</td>
<td>98</td>
<td>82</td>
</tr>
<tr>
<td>NaF</td>
<td>100</td>
<td>97</td>
<td>83</td>
</tr>
<tr>
<td>Sodium thioglycolate</td>
<td>98</td>
<td>100</td>
<td>82</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>110</td>
<td>101</td>
<td>78</td>
</tr>
<tr>
<td>Phenanthroline</td>
<td>108</td>
<td>104</td>
<td>77</td>
</tr>
<tr>
<td>Potassium permanganate</td>
<td>73</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PMSF</td>
<td>98</td>
<td>97</td>
<td>83</td>
</tr>
</tbody>
</table>

The enzyme was preincubated with various inhibitors for 30 min at 37°C. After incubation, the mixture was subjected to CGTase assay.
Fig. 10. Determination of molecular weight of CGTase by Sephacryl S-200HR gel filtration (A) and SDS-PAGE (B). In (A), the standards are β-Amylase (Amy), MW 200,000; Alcohol dehydrogenase (ADH), MW 150,000; bovine serum albumin (BSA), MW 66,000; α-Chymotrypsinogen A (Chy), 25,000; Void volume (Ve), Blue dextran (MW 20,000,000); Elution volume (Ve), Sample elution volume. In (B) the standards are phosphorylase (Phs), MW 97,000; Fructose-6-phosphate (Fru), MW 84,000; Bovine serum albumin (BSA), MW 66,000; Glutamic dehydrogenase (Glu), MW 55,000; Ovalbumin (Ova), MW 45,000; Glyceraldehyde-3-phosphate dehydrogenase (GPD), MW 36,000.

was strongly inhibited by metal ions such as Mn²⁺, Hg²⁺, Ag⁺, and Cu²⁺, but was relatively stable to K⁺ and Cd²⁺. Unlike CGTase of *Paenibacillus* sp. JB-13 and *B. autolyticus* 11149 [34], *Bacillus* sp. AL-6 [7] was relatively stable to Hg²⁺.

The enzyme solution was mixed with 100 mM potassium phosphate buffer (pH 7.0) containing inhibitors and preincubated at 37°C for 30 min, and the substrates (CD and sucrose) were then added. As shown in Table 4, the enzyme activity was strongly inhibited by SDS and potassium permanganate, but it was only moderately inhibited by ammonium persulfate, l-cysteine hydrochloride, and NaNO₃.

Molecular Weight and Isoelectric Point

The molecular weight of the CGTase was estimated to be 66,000 by Sephacryl S-200HR column chromatography (Fig. 10A). The molecular weight was also determined to be 66,000 by SDS-PAGE (Fig. 10B). These results indicate that the CGTase is a monomeric enzyme. The reported CGTases had similar molecular weights as those from *B. macerans* [37], *B. megaterium* [9], *B. coagulans* [2], and *B. steaetherophilus* [10].

The isoelectric point of the enzyme preparation was determined by the isoelectric focusing method and found to be pH 5.3 (data not shown), which was different from the optimum pH of 4.5 as reported by Kitahata [9, 10]. However, Nakamura [26] found an isoelectric point of pH 5.4 for the CGTase in their alkalophilic *Bacillus* sp.

Kₘ

The Michaelis constants for various substrates were determined by the Lineweaver-Burk plot using the reciprocals of the reaction velocity and substrate concentrations. Table 5 summarizes the Michaelis constants and maximum velocities for the reactions. The Kₘ and Vₘₐₓ values with soluble starch as a substrate were 55.9 g/l and 0.27 mg/ml/min, respectively. In the coupling activity, the Kₘ value of this enzyme for α-CD was similar to that for β-CD, but was about 13 times smaller than that for γ-CD. In the ring opening, the Kₘ value of CGTase for γ-CD was also larger than those for α-CD and β-CD.

Acknowledgments

This work was supported by grant No. 1999-2-211-001-3 from the Interdisciplinary Research Program of Korea Science and Engineering Foundation (Taejon, Korea).

REFERENCES

