Development of Noninformative Priors
in the Burr Model

Jang Sik Cho1) · Sang Gil Kang2) · Sung Uk Baek3)

Abstract

In this paper, we derive noninformative priors for the ratio of parameters in the Burr model. We obtain Jeffreys' prior, reference prior and second order probability matching prior. Also we prove that the noninformative prior matches the alternative coverage probabilities and a HPD matching prior up to the second order, respectively. Finally, we provide simulated frequentist coverage probabilities under the derived noninformative priors for small and moderate size of samples.

Key Words : Alternative coverage probability; HPD matching prior; Probability matching prior; Reference prior.

1. Introduction

In the lifetime studies, Burr model can be generalized to the exponential model. Burr model has been widely used as a model in areas ranging from studies on the lifetimes of manufactured items to research involving survival or remission times in chronic diseases.

Now let \(x \) be a random variable having Burr model with parameter \(\theta \). Then probability density function for random variable is as follows:

\[
\begin{align*}
f(x \mid \theta) &= 2\theta x \exp(-x^2)(1 - \exp(-x^2))^{\theta-1}, \quad x > 0, \quad \theta > 0.
\end{align*}
\] (1)

And let \(y \) be another random variable having Burr model with parameter \(\phi \).

1) Assistant Professor, Department of Statistical Information Science, Kyungsung University, Busan, 608–736, Korea E-mail : jscho@star.ks.ac.kr
2) Full-Time Lecturer, Department of Statistical Information Science, Kyungsung University, Busan, 608–736, Korea E-mail : sangkg@star.ks.ac.kr
3) Researcher, Research Institute for Basic Science, Kyungsung University, Busan, 608–736, Korea E-mail: subaek@star.ks.ac.kr
Here, X and Y are independent. We focus on the ratio of these parameters, $r_1 = \phi/\theta$. Then we can see that the ratio of parameters means the comparative importance of Y for X. That is, if $r_1 = 1$ then X and Y are same parameters, that is $P(X > Y) = 1/2$. If $r_1 > 1$ (or $r_1 < 1$) then the parameters of Y is greater(or less) than that of X, that is $P(X > Y) < 1/2$. So we focus exclusively on developing noninformative priors for r_1.

In Bayesian analysis, inference problems are not simple because of problems associated with selection of priors as well as computational difficulties. A commonly used noninformative prior is the Jeffreys’ prior (1961) utilizing a data translated likelihood. Although its successful commitment, Berger and Bernardo (1989) argue that the Jeffreys’ prior has serious deficiencies in multiparameter case. To overcome these deficiencies, Berger and Bernardo (1992) and Ghosh and Mukerjee (1992) introduced the reference prior. Recently, Mukerjee and Ghosh (1997) developed a second order matching prior.

In this paper, we derive the second order matching prior for r_1 and obtain the propriety of posterior under the derived noninformative prior. We prove that the second order matching prior matches the alternative coverage probabilities and a HPD matching prior up to the same order, respectively. Finally, we provide simulated frequentist coverage probabilities under the derived noninformative prior for small and moderate size of samples.

2. Noninformative Priors

2.1 The Probability Matching Priors

Suppose that $X=(X_1, \cdots, X_n)$ and $Y=(Y_1, \cdots, Y_n)$ are random samples from Burr (θ) and Burr (ϕ), respectively. Here, X and Y are independent. The log-likelihood function of (θ, ϕ) is given by

$$l(\theta, \phi) = \ln(\theta) + n \ln(\phi) + \theta \sum \ln(1 - \exp(-x_i^{\phi})) + \phi \sum \ln(1 - \exp(-y_i^{\phi}))$$

Fisher information matrix of (θ, ϕ) is given by

$$I(\theta, \phi) = \begin{pmatrix} \frac{m}{\theta^2} & 0 \\ 0 & \frac{n}{\phi^2} \end{pmatrix}$$

Then Jeffreys’ prior is $|I(\theta, \phi)|^{1/2} \propto (\theta \phi)^{-1}$. That is,

$$\pi_J(\theta, \phi) \propto \frac{1}{\theta \phi}.$$ \hfill (2)

Since the parameter of interest is $r_1 = \phi/\theta$, our interest is to find the probability
matching prior for \(r_1 \).

For a prior \(\pi \), let \(r_1^{-\alpha}(\pi, \mathbf{X}, \mathbf{Y}) \) denote the \(100(1-\alpha)\% \) percentile of the posterior distribution of \(r_1 \), that is,

\[
P_{\pi} [r_1 \leq r_1^{-\alpha}(\pi, \mathbf{X}, \mathbf{Y}) | \mathbf{X}, \mathbf{Y}] = 1 - \alpha. \tag{3}
\]

We want to find priors \(\pi \) for which

\[
H \{ r_1 \leq r_1^{-\alpha}(\pi, \mathbf{X}, \mathbf{Y}) | \theta, \phi \} = 1 - \alpha + o(n^{-\alpha}), \tag{4}
\]

for some \(\alpha > 0 \), as \(n \) goes to infinity. If \(\alpha = 1/2 \), then \(\pi \) is referred to as a first order matching prior, while if \(\alpha = 1 \), \(\pi \) is referred to as a second order matching prior.

In order to find such matching priors \(\pi \), it is convenient to introduce orthogonal parameterization (Cox and Reid, 1987; Tibshirani, 1989). Now we let

\[
r_1 = \frac{\phi}{\theta}, \quad r_2 = \theta \phi. \tag{5}
\]

Then the log-likelihood function for \((r_1, r_2) \) has the alternate representation as follows:

\[
l(r_1, r_2) = \ln r_2 + r_2^{-\frac{1}{2}} \left(r_1^{-\frac{1}{2}} \ln(1 - \exp(-x^2)) + r_1^\frac{1}{2} \ln(1 - \exp(-y^2)) \right). \tag{6}
\]

Based on (6), the Fisher information matrix is given by

\[
\mathbf{I}(r_1, r_2) = \begin{bmatrix}
\frac{1}{2r_1^2} & 0 \\
0 & \frac{1}{2r_2^2}
\end{bmatrix}.
\]

Thus \(r_1 \) is orthogonal to \(r_2 \) in the sense of Cox and Reid (1987). By Tibshirani (1989), the class first order matching prior is characterized by

\[
\pi_{\alpha}(r_1, r_2) \propto \frac{1}{r_1} d(r_2), \tag{7}
\]

where \(d(\cdot) \) is an arbitrary differentiable function in its argument.

Clearly the class of prior of given (7) is quite large and it is important to narrow down this class of prior. To do this, we consider the class of second order probability matching priors as given in Mukerjee and Ghosh (1997). A second order matching prior is also of the form (7), but the function \(d \) must satisfy an additional differential equation, namely

\[
\frac{1}{6} d(r_2) \frac{\partial}{\partial r_1} \left(I_{11}^{-\frac{3}{2}} L_{1,1,1} \right) + \frac{\partial}{\partial r_2} \left(I_{12}^{-\frac{3}{2}} L_{12} I_{22} d(r_2) \right) = 0, \tag{8}
\]

where

\[
L_{1,1,1} = E \left[\left(\frac{\partial^3}{\partial r_1^3} \right)^2 \right] = 0, \quad L_{12} = E \left[\frac{\partial^3}{\partial r_1 \partial r_2 \partial r_1} \right] = \frac{1}{4} r_1^{-2} r_2^{-1},
\]

and

\[
\begin{pmatrix}
I_{11} & I_{12} \\
I_{21} & I_{22}
\end{pmatrix}^{-1} = \begin{pmatrix}
r_1^2 & 0 \\
0 & 2r_2^2
\end{pmatrix}.
\]

Then (8) simplifies to...
\[
\frac{\partial}{\partial r_2} \left(2 r_2^{-1} r_1^{-1} d(r_2) \right) = 0.
\] (9)

Hence the set of (9) is of the form \(d(r_2) \propto 1/r_2 \). That is, the second order matching prior is given by

\[
\pi_{\mathcal{M}}^{(2)}(r_1, r_2) \propto \frac{1}{r_1 r_2}.
\]

Back to \((\theta, \phi)\) formulation the above second order matching prior transforms to

\[
\pi_{\mathcal{M}}^{(2)}(\theta, \phi) \propto \frac{1}{\theta \phi}.
\] (10)

Other possible noninformative prior is the reference prior of Bernardo (1979). Due to the orthogonality of \(r_1 \) with \(r_2 \) from Datta and Ghosh (1995b), the reference prior is given by

\[
\pi_{\mathcal{R}}(r_1, r_2) \propto \frac{1}{r_1 r_2}.
\]

This prior is clearly a second order probability matching prior. Thus it turns out that the Jeffreys’ prior, the reference prior and second order matching prior for \((\theta, \phi)\) are the same in the Burr model. Therefore we denote

\[
\pi_{\mathcal{J}}(\theta, \phi) = \pi_{\mathcal{R}}(\theta, \phi) = \pi_{\mathcal{M}}^{(2)}(\theta, \phi).
\] (11)

2.2 Matching the Alternative Coverage Probability

Mukerjee and Reid (1999) studied that a prior satisfying (10) matches \(P[\theta + \beta(I^{11}/n)^{1/2} \leq \theta^1 - \alpha(\mathbf{Z}) | \theta] \) with the corresponding posterior probability up to the same order for each \(\beta \) and \(\alpha \). Here the scalar \(\beta \) is free from \(n, \theta \) and \(\mathbf{Z} \). If a matching prior matches the alternative coverage probabilities then there is a stronger justification for calling it noninformative in so far as agreement with a frequentist is concerned. In general a second order matching prior may or may not match the alternative coverage probabilities up to the same order of approximation.

Under orthogonal parameterization, Mukerjee and Reid (1999) gives the simple differential equations that a second order probability matching prior satisfies the alternative coverage probabilities up to the second order. The differential equations are given by

\[
\sum_{s=1}^{l} \sum_{t=2}^{l} \frac{\partial}{\partial \theta^s} \left(L_{11} I^{1/2} d(\theta_2, \ldots, \theta_s) \right) = 0,
\] (12)

\[
\sum_{t=2}^{l} \frac{\partial}{\partial \theta^s} \left(L_{s,t} I^{1/2} d(\theta_2, \ldots, \theta_s) \right) = 0,
\] (13)

\[
\frac{\partial}{\partial \theta^1} \left(I_{11}^{-3/2} L_{11} \right) = 0 \quad \text{and} \quad \frac{\partial}{\partial \theta_1} \left(I_{11}^{-3/2} L_{11} \right) = 0,
\] (14)

where \(\theta = (\theta_1, \ldots, \theta_l)^T \), \(\theta_1 \) is the parameter of interest.

Theorem 1. The second order probability matching prior for \(r_1 \).
\[\pi_{(2)}(r_1, r_2) = \frac{1}{r_1 r_2} \]
matches the alternative coverage probabilities up to the second order.

Proof: Since \(r_1 \) is orthogonal to \(r_2 \), the differential equations for the case of \(r_1 \) are given as

\[\frac{\partial \log L}{\partial r_2} (L_{11} I_{11}^{22} I_{11}^{-1/2} d(r_2)) = 0, \]

\[\frac{\partial \log L}{\partial r_2} (L_{21} I_{11}^{22} I_{11}^{-1/2} d(r_2)) = 0, \]

\[\frac{\partial \log L}{\partial r_1} (I_{11}^{-3/2} L_{111}) = 0 \quad \text{and} \quad \frac{\partial \log L}{\partial r_1} (I_{11}^{-3/2} L_{11,11}) = 0. \]

Since

\[d(r_2) = (r_2)^{-1}, L_{11} = E \left[\frac{\partial^3 \log L}{\partial r_1^3} \right] = \frac{3}{2} r_1^{-3}, \]

\[L_{11} = E \left[\frac{\partial^3 \log L}{\partial r_1^3} \frac{\partial^3 \log L}{\partial r_2^3} \right] = \frac{1}{4} r_1^{-2} r_2^{-1}, \]

\[L_{21} = E \left[\frac{\partial \log L}{\partial r_1} \frac{\partial^2 \log L}{\partial r_2^2} \right] = -\frac{1}{2} r_1^{-3}, \]

\[L_{21} = E \left[\frac{\partial \log L}{\partial r_1} \frac{\partial \log L}{\partial r_2} \right] = \frac{1}{4} r_1^{-2} r_2^{-1}, \]

\[I_{11} = \frac{1}{2r_1^2} \quad \text{and} \quad I_{22} = 2r_2^2, \]

we can see that

\[\frac{\partial \log L}{\partial r_2} (L_{11} I_{11}^{22} I_{11}^{-1/2} d(r_2)) = 0, \]

\[\frac{\partial \log L}{\partial r_2} (L_{21} I_{11}^{22} I_{11}^{-1/2} d(r_2)) = 0, \]

\[\frac{\partial \log L}{\partial r_1} (I_{11}^{-3/2} L_{111}) = 0, \quad \frac{\partial \log L}{\partial r_1} (I_{11}^{-3/2} L_{11,11}) = 0. \]

Therefore the second order matching prior matches the alternative coverage probabilities up to the second order. \(\square \)

2.3 HPD Matching Priors

There are alternative ways through which matching can be accomplished. One such approach (Ghosh and Mukerjee, 1995) is matching through the HPD region. Specifically, if \(\bar{\pi} \) denotes the posterior distribution of \(\theta_1 \) under a prior \(\pi \), and

\[k_s \equiv k_s(\pi, Z) \] is such that

\[P \left[\bar{\pi}(\theta_1 | Z) \geq k_s \mid Z \right] = 1 - a + o(n^{-n}), \]

then the HPD region for \(\theta_1 \) with posterior coverage probability \(1 - a + o(n^{-n}) \) is
given by
\[H_\pi(\boldsymbol{Z}) = \{ \theta; \hat{\pi}(\theta_0 | Z) \geq k, \} \]
(17)

Ghosh and Murknerjee (1995) characterized priors \(\pi \) for which
\[P(\theta \in H_\pi(\boldsymbol{Z}) | \theta) = 1 - a + o(n^{-}) \],
(18)

for all \(\theta \) and all \(a \in (0, 1) \). They found necessary and sufficient conditions which \(\pi \) satisfies (18). Due to the orthogonality of \(r_1 \) with \(r_2 \), a prior \(\pi \) is a HPD matching prior if and only if it satisfies
\[\frac{\partial^2}{\partial r_1^2} (I_1^{11} \pi) - \frac{\partial}{\partial r_1} (L_{111} (I_1^{11})^2 \pi) - \frac{\partial}{\partial r_2} (L_{112} I_1^{22} I_1^{11} \pi) = 0. \]
(19)

Theorem 2. The second order probability matching prior for \(r_1 \)
\[\pi^{(2)}(r_1, r_2) = \frac{1}{r_1 r_2} \]
(20)
is a HPD matching prior up to the same order.

Proof: The second order probability matching prior must satisfies the differential equations (19). Since
\[L_{111} = E \left[\frac{\partial^3 \log L}{\partial r_1^3} \right] = \frac{3}{2} r_1^{-3}, \]
\[L_{112} = E \left[\frac{\partial^3 \log L}{\partial r_1^2 \partial r_2} \right] = \frac{1}{4} r_1^{-2} r_2^{-1}, \]
hence
\[I_1^{11} = \frac{1}{2} r_1^2 \text{ and } I_1^{22} = 2 r_2^2, \]
thus
\[\frac{\partial^2}{\partial r_1^2} (I_1^{11} \pi^{(2)}_M) - \frac{\partial}{\partial r_1} (L_{111} (I_1^{11})^2 \pi^{(2)}_M) - \frac{\partial}{\partial r_2} (L_{112} I_1^{22} I_1^{11} \pi^{(2)}_M) = 0. \]
Therefore the second order matching prior is a HPD matching prior up to the second order. This completes the proof.

3. Implementation of the Bayesian Procedure

We now prove that the posterior is proper under the noninformative prior given in (10).

Theorem 3. The posterior distribution of \((\theta, \phi) \) under the prior \(\pi \) (10) is proper.

Proof. Note that
\[\int_{0}^{\infty} \int_{0}^{\infty} L(\theta, \phi) \frac{1}{\theta \phi} d\theta d\phi \]
\[
2^m n \prod_{i=1}^m \frac{x_i}{(1 - \exp(-x_i^2))} \prod_{j=1}^n \frac{y_j}{(1 - \exp(-y_j^2))} \times \exp\left(-\sum_{i=1}^m x_i^2 - \sum_{j=1}^n y_j^2\right) \times \frac{\Gamma(m)}{\left[\sum_{i=1}^m \ln(1 - \exp(-x_i^2))\right]^m} \times \frac{\Gamma(n)}{\left[\sum_{i=1}^n \ln(1 - \exp(-y_j^2))\right]^n} < \infty,
\]

where \(\Gamma(k) = \int_0^\infty u^{k-1}e^{-u}du, \ k>0. \)

This completes the proof.

Next, we provide the marginal density of \(r_1 \) under the second order matching prior.

Theorem 4. The marginal posterior density of \(r_1 = \phi/\theta \) is given by

\[
p(r_1 | \mathbf{X}, \mathbf{Y}) \propto \frac{r_1^{m-n-2}}{r_1^{1/2} \sum_{i=1}^m x_i + r_1^{1/2} \sum_{j=1}^n y_j} \left(\frac{r_1 + m - 2}{r_2 + n - 2}\right)^{m+n-1}. \tag{22}
\]

Proof: Let \(p(r_1 | \mathbf{X}, \mathbf{Y}) \) be the marginal posterior density of \(r_1 \). Then

\[
p(r_1 | \mathbf{X}, \mathbf{Y}) \propto \int_0^\infty L(r_1, r_2) \frac{1}{r_1 r_2} \, dr_2
\]

\[
\propto \int_0^\infty 2^m n \prod_{i=1}^m \frac{x_i}{1 - \exp(-x_i^2)} \prod_{j=1}^n \frac{y_j}{1 - \exp(-y_j^2)} \times \exp\left(-\sum_{i=1}^m x_i^2 - \sum_{j=1}^n y_j^2\right) r_1^{m-n-2} r_2^{n-m-2} \times \frac{\Gamma(m)}{\left[\sum_{i=1}^m \ln(1 - \exp(-x_i^2))\right]^m} \times \frac{\Gamma(n)}{\left[\sum_{i=1}^n \ln(1 - \exp(-y_j^2))\right]^n} \times \left(\frac{r_1 + m - 2}{r_2 + n - 2}\right)^{m+n-1} \left(\frac{r_1 + m - 2}{r_2 + n - 2}\right)^{m+n-1} dr_2.
\]

Therefore,
\[p(r_1 | \mathbf{X}, \mathbf{Y}) = c \cdot \frac{r_1^{(n - m - 2)/2}}{\left(r_1^{-1/2} \sum_{i=1}^{m} x_i + r_1^{1/2} \sum_{j=1}^{n} y_j \right)^{m+n}} , \]

where \(c \) is normalized constant.

This completes the proof. \(\square \)

5. Simulation Study

We evaluate the frequentist coverage probability by investigating the credible interval of the marginal posterior density of \(r_1 \) when \(m \) and \(n \) are small and moderate size of samples. To do this we set, \((m, n) = (3, 3), (5, 5), (8, 8), (10, 10), (20, 20), (30, 30) \) and \(r_1 = (3, 5, 10) \). Also we set the frequentist coverage probability for \(\gamma = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 \). The computation of these numerical values is based on the following algorithm. For any fixed true \((\theta, \phi) \) and any prespecified probability value \(\gamma \), let \(r_1^\gamma(\gamma | \mathbf{X}, \mathbf{Y}) \) be the posterior \(\gamma \)-quantile of \(r_1 \) under prior \(\pi \). Then the frequentist coverage probability of this one sided credible interval of \(r_1 \) is

\[P_{(\theta, \phi)}(\gamma; r_1) = P_{(\theta, \phi)}(0 < r_1 \leq r_1^\gamma(\gamma | \mathbf{X}, \mathbf{Y})) . \] (23)

The estimated \(P_{(\theta, \phi)}(\gamma; r_1) \) is shown in Table 1. In particular, for fixed \((\theta, \phi, m, n) \), we take 10,000 independent random samples of size \(m \) Burr(\(\theta \)) and of size \(n \) Burr(\(\phi \)). Note that for fixed \(\mathbf{X} \) and \(\mathbf{Y} \), \(r_1 \leq r_1^\gamma(\gamma | \mathbf{X}, \mathbf{Y}) \) if and only if \(F(r_1 | \mathbf{X}, \mathbf{Y}) \leq \gamma \). Under the prior \(\pi \), \(P_{(\theta, \phi)}(\gamma; r_1) \) can be estimate by the relative frequency of \(F(r_1^\gamma(\gamma | \mathbf{X}, \mathbf{Y})) \leq \gamma \). For the cases presented in Table 1.

We can see that the proposed noninformative priors \(\pi \) meets very well the target coverage probability. Also we note that the results are not sensitive to the change of the values of \((\theta, \phi) \) and confidence levels.
<Table 1> Generated samples \((x_1, x_2, y)\)

<table>
<thead>
<tr>
<th>(r_1)</th>
<th>((m, n))</th>
<th>(\gamma)</th>
<th>0.05</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.70</th>
<th>0.90</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>(3,3)</td>
<td></td>
<td>0.051</td>
<td>0.103</td>
<td>0.298</td>
<td>0.505</td>
<td>0.701</td>
<td>0.901</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>(5,5)</td>
<td></td>
<td>0.051</td>
<td>0.103</td>
<td>0.310</td>
<td>0.511</td>
<td>0.702</td>
<td>0.902</td>
<td>0.953</td>
</tr>
<tr>
<td></td>
<td>(8,8)</td>
<td></td>
<td>0.052</td>
<td>0.105</td>
<td>0.302</td>
<td>0.497</td>
<td>0.692</td>
<td>0.897</td>
<td>0.949</td>
</tr>
<tr>
<td></td>
<td>(10,10)</td>
<td></td>
<td>0.048</td>
<td>0.098</td>
<td>0.302</td>
<td>0.502</td>
<td>0.700</td>
<td>0.904</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>(20,20)</td>
<td></td>
<td>0.054</td>
<td>0.104</td>
<td>0.307</td>
<td>0.508</td>
<td>0.707</td>
<td>0.903</td>
<td>0.953</td>
</tr>
<tr>
<td></td>
<td>(30,30)</td>
<td></td>
<td>0.049</td>
<td>0.091</td>
<td>0.298</td>
<td>0.494</td>
<td>0.694</td>
<td>0.895</td>
<td>0.947</td>
</tr>
<tr>
<td>5.0</td>
<td>(3,3)</td>
<td></td>
<td>0.050</td>
<td>0.101</td>
<td>0.302</td>
<td>0.501</td>
<td>0.699</td>
<td>0.896</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>(5,5)</td>
<td></td>
<td>0.049</td>
<td>0.097</td>
<td>0.287</td>
<td>0.492</td>
<td>0.696</td>
<td>0.900</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>(8,8)</td>
<td></td>
<td>0.052</td>
<td>0.102</td>
<td>0.300</td>
<td>0.503</td>
<td>0.706</td>
<td>0.907</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td>(10,10)</td>
<td></td>
<td>0.051</td>
<td>0.102</td>
<td>0.303</td>
<td>0.502</td>
<td>0.702</td>
<td>0.900</td>
<td>0.949</td>
</tr>
<tr>
<td></td>
<td>(20,20)</td>
<td></td>
<td>0.050</td>
<td>0.102</td>
<td>0.303</td>
<td>0.499</td>
<td>0.701</td>
<td>0.903</td>
<td>0.951</td>
</tr>
<tr>
<td></td>
<td>(30,30)</td>
<td></td>
<td>0.049</td>
<td>0.100</td>
<td>0.298</td>
<td>0.503</td>
<td>0.695</td>
<td>0.899</td>
<td>0.950</td>
</tr>
<tr>
<td>10.0</td>
<td>(3,3)</td>
<td></td>
<td>0.048</td>
<td>0.098</td>
<td>0.296</td>
<td>0.493</td>
<td>0.696</td>
<td>0.894</td>
<td>0.946</td>
</tr>
<tr>
<td></td>
<td>(5,5)</td>
<td></td>
<td>0.054</td>
<td>0.103</td>
<td>0.295</td>
<td>0.494</td>
<td>0.696</td>
<td>0.900</td>
<td>0.953</td>
</tr>
<tr>
<td></td>
<td>(8,8)</td>
<td></td>
<td>0.054</td>
<td>0.104</td>
<td>0.307</td>
<td>0.500</td>
<td>0.698</td>
<td>0.900</td>
<td>0.952</td>
</tr>
<tr>
<td></td>
<td>(10,10)</td>
<td></td>
<td>0.050</td>
<td>0.101</td>
<td>0.303</td>
<td>0.506</td>
<td>0.705</td>
<td>0.899</td>
<td>0.948</td>
</tr>
<tr>
<td></td>
<td>(20,20)</td>
<td></td>
<td>0.051</td>
<td>0.103</td>
<td>0.303</td>
<td>0.497</td>
<td>0.697</td>
<td>0.894</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td>(30,30)</td>
<td></td>
<td>0.049</td>
<td>0.103</td>
<td>0.304</td>
<td>0.499</td>
<td>0.695</td>
<td>0.900</td>
<td>0.948</td>
</tr>
</tbody>
</table>

References

[received date : Dec. 2002, accepted date : Feb. 2003]