건조방법에 따른 해조류(uda)의 생성활성 성분 및 항산화 활성의 변화

김진아 · 이종미*
제주대학교 식품영양학과, 이화여자대학교 식품영양학과*
(2004년 4월 9일 접수)

The Change of Biologically Functional Compounds and Antioxidant Activities in Hizikia Fusiformis with Drying Methods
Jin-Ah Kim and Jong-Mee Lee*
Department of food and nutrition, Cheja National University,
Department of food and nutrition, Ewha Womans University*
(Received April 9, 2004)

Abstract

This study was performed to investigate the change of biologically functional compounds and antioxidant activities in Hizikia fusiformis with drying methods. As biologically functional compounds, the contents of minerals(K, Ca, Na, Mg, Fe, Cu, Mn and Zn), vitamins(vitamin C, β-carotene and α-tocopherol) and total polyphenol were analyzed. And antioxidant activity was determined through free radicals(DPPH radical, superoxide anion radical, hydroxyl radical and hydrogen peroxide) scavenging activity and linoleic acid peroxidation inhibitory activity. The contents of minerals were not affected by drying methods however vitamins and total polyphenol were lost more by sun-drying than other drying methods studies. Total polyphenol was preserved by freezing-drying than other drying methods studies, resulting in high antioxidant activities.

Key Words: Hizikia fusiformis, drying methods, biologically functional compounds, antioxidant activity

I. 서 론

제주도는 섬이라는 독특한 자연환경으로 인해 해양 생물의 보고로 알려져 있다. 제주도 연안에는 담
조식물 53종, 갈조식물 81종, 홍조식물 287종으로 총
432종의 해양 식물이 생육하고 있으며, 이는 한국
연안에 생육하고 있는 해양식물의 63%를 차지 한
다.1,2) Hizikia fusiformis(uda)는 갈조류 모자판과에
속하는 해조류로 제주도 지역의 용 생산량은 전국
생산량의 50%를 차지하고 있고3) 제주도인들이 즐
겨먹는 해조류 중의 하나이기도 하다. 그러나, 현재
식생활에서 용이 차지하고 있는 비중에 비해 식품
제료로서의 연구는 거의 이루어지지 않고 있다.

제주도는 사면이 바다이어서 언제든지 해조류를
채집할 수 있으므로 과거에서부터 해조류는 제주인
들의 식탁에 자주 오르는 식품재료였다4). 저장식품
도 드물지만, 모자판 말럼 등 해조류를 많이 이용하였
다. 해조류 말럼은 현재 빛깔에 널리 알려지는 천연건

교신저자: Jin-Ah Kim, Cheja National University, 1 Ara-dong, Jeju 690-756, Korea Tel : 82-646-754-3550 Fax : 82-64-725-7539 E-mail : bjajih@hanmail.net
조법이 주로 이용되고 있으며, 핵별로 건조시키는 과정에서 색소, 일반성분 등의 변화를 경험하게 된다. 그러나 해조류를 건조하는 과정에서 일어날 수 있는 여러 가지 변화에 대한 연구 또한 거의 전부의 설정이다. 또한 식품은 채집한 그대로 따서 기계 하지만 주로 섭취하기까지 나물대로의 조리·가공 과정을 거치게 되므로 이러한 과정을 통해 해조류 내의 생리활성 관련 성분의 변화와 이에 따른 생리 활성 효과는 어떻게 변화하는지 등에 대한 내용이 매우 중요하다.

이에 본 연구는 제주도가 우리나라의 주산지라고 알려져 있는 갈조류인 뚝을 저장하기 위해 건조시험 때 건조 방법에 의한 뚝의 조리과학적 변화를 밝히고자 다음과 같은 실험을 수행하였다. 즉, 건조방법에 따른 무기질, 비타민, 총 polysaccharide 함량 등 생리활성 성분의 변화를 분석하고 이를 성분의 변화에 따른 뚝의 저장성과 저장성, 다다란 소지성 등 항산화 활성은 어떻게 변화하는지를 알아 보였다.

II. 실험재료 및 방법

1. 실험재료

본 실험에 사용된 Hizikia fusiformis(뚝)은 제주도 성산포 연안에 서식하고 있는 갈조류로 서식체침은 제주도 남제주군 성산 이촌네 해녀들의 장수를 동 하여 채집하였다. 채집된 뚝은 채집한 즉시 실험 실로 운반하여 뚝은 수돗물로 수확하고, 건조 처 리법에 따라 180℃의 10분간 음성스학적 구분(LG Cutter, GFMC-300R)하여 분말화한 다음, -18℃의 냉동고(Vision Sci, co., VS-87)에 보관하면서 분석 사료로 사용하였다.

2. 뚝의 건조처리법

해조류를 건조하여 저장하는 과정에서 일어날 수 있는 품질변화를 억제하기 위해 이에 관여하는 효과를 불활성화 처리하기 위한 수단으로 해조류을 살짝 뚝에서 건조하였다. 이를 적정 배치시간을 설정하기 위하여 일치시키는 효과를 불활성화의 적도로 많이 사용되는 peroxidase의 활성을 측정하였다.

1) 건조 전처리의 방법으로서 테춰시간별 해조류 뚝처리

뚝을 0초, 10초, 20초, 40초, 1분, 1분 30초, 2분, 4 분, 6분, 10분간 각각 뚝을 다음 30분간 자연적으로 물째기를 하였다. 뚝, 분쇄기(LG Cutter, GFMC-300R)로 1분간 분쇄한 후 peroxidase의 활성을 조사하였다.

2) 테juries 시간별 peroxidase의 활성 측정

Peroxidase의 활성은 Chen과 Chen의 방법을 이용하였다. 효소 반응을 위한 기약식은 시간별로 뚝 시험 10g에 sodium phosphate buffer(pH 6.0)를 넣고 거품화 시킨 후 병가한 액을 사용하였다. 반응 용액은 guaiacol 558μl과 30% H2O2 용액 194.4μl에 sodium phosphate buffer를 이와하여 100ml로 정량하여 제조하였다. 이렇게 제조된 반응용액 2ml에 0.1ml 효소 추출액을 첨가하고 420nm에서 항산화를 측정하였다. 측정된 효소의 활성 1unit는 분당 변화되는 항산화도로 계산하였다.

3) 적정 뚝처리시간 설정

적정 배치시간은 뚝방식에 따른 peroxidase 활성 변화를 측정하여 결정하였다. 즉, 뚝방식에 대한 효소 활성도 산화를 그나 다음 활성도가 급격히 저하되는 시점은 1분으로 설정하였다.

4) 뚝의 건조조건

뚝을 적정 배치하는 동안 일어날 수 있는 품질 변화에 관여하는 효소를 불활성화시키기 위하여 1 분간 배치 뚝을 동결, 얼동, 천일 건조하였다. 동결 건조 뚝은 뚝을 -50℃의 동결고정고에서 동결시간 후 동결건조기(Ilan co., PVTG)에서 선반 온도를 30℃로 건조하였다. 얼동건조 뚝은 얼동건조기(Vision Sci, co., KMC-1202DS)의 내부온도를 50℃로 하여 하룻밤 동안 건조하였다. 천일건조 뚝은 차 반에 잘 평평한 양에서 2-3일간 건조하였다. 건조 된 사료는 분쇄하여 분석에 이용하였으며, 분석 전까지는 -18℃의 동결고에 보관하였다.

3. 무기질 함량 측정

뚝의 무기질 함량분석을 위하여 전처리는 습식분
해 증 H₂SO₄-HClO₄ 분해법을 이용하였다. 다양원소 인 Na, Mg, K, Ca와 미량원소인 Mn, Fe, Cu, Zn을 ICP-AES을 이용하여 분석하였다. ICP-AES의 분석 조건은 (Table 1)과 같았으며, 각 원소별 측정 wavelength(nm)는 Ca 313.2, K 766.5, Na 589.6, Mg 279.0, Fe 259.9, Mn 257.6, Cu 324.8, Zn 206.2 이었다.

4. Vitamin C, β-carotene 및 α-tocopherol 함량 측정

Vitamin C 함량은 분말화한 시료에 5% metaphosphoric acid를 가해 용해 후 50ml로 정착하고 원심분리한 후 그 상태를 여과하여 0.45μm syringe filter 처리한 후 HPLC로 측정하였다. HPLC 분석조건은 UV detector 254nm, N,N',N''-3.9× 300nm column(μ-Bondapak), mobile phase 0.05M-KH₂PO₄/Acetonitrile =3/7(v/v), flow rate 1.0ml/min 으로 하였다.

β-Carotene 함량은 우선 적당량의 시료에 ethanol, 10% ethanolic pyrogallol 및 KOH 용액을 가해 혼합시키고 필요에 따라 70°C에서 30분간 처리한 후 HPLC로 측정하였다. HPLC 분석조건은 UV detector 254nm, silica 3.9×150nm column(Novapak), mobile phase n-hexane/isopropylanol =97/3(v/v), flow rate 1.0ml/min으로 하였다.

α-Tocopherol 함량은 분말시료에 ethanolic pyrogallol 및 KOH 용액을 가해 혼합시키고 추출액(hexane/methylene chloride/ether=6/3/1)으로 3회 추출한 후 감압농축 하였다. 이를 n-hexane으로 녹여 일정량으로 하여 HPLC를 시행하였으며, HPLC 분석조건은 UV detector 295nm, silica 3.9×150nm column(Novapak), mobile phase n-hexane/isopropylanol =99/1(v/v), flow rate 1.5ml/min으로 하였다.

5. 총 polyphenol 함량 측정

총 polyphenol 함량은 AOAC 법7을 이용하였다. 시료용액은 건조시료 0.1g을 75% methanol 용액으로 추출한 후 여과하여 제조하였다. 제조한 시료추출 용액 1ml에 증류수 5ml와 Folin-Ciocalteau 0.1ml를 넣고, 여기에 Na₂CO₃ 포화용액 0.2ml를 가한 후 증류수로 회석하고 실온에서 1시간 동안 반응한 후 725nm에서 흡광도를 측정하였다. 표준물질로는 tannic acid를 사용하였고, 동일한 방법으로 작성된 표준 곡선으로부터 총 polyphenol 함량으로 환산하였다.

6. 항산화 활성 측정

1) Linoleic acid 산화 저해능

뜻 추출물에서 양성되는 linoleic acid 의 자동산화 저해능은 Esaki 등10의 방법에 따라 측정하였다. 반응 용액으로는 시료추출물 1ml, linoleic acid 0.13ml, 99.8% ethanol 용액 10ml, 0.2M phosphate buffer 용액 (pH 7.0) 10ml를 혼합한 뒤 증류수로 25ml가 되도록 정정하여 사용하였다. 이렇게 제조한 용액을 40°C에서 incubation시켰다. Incubation시킨 후 0.2ml를 취하여 75% ethanol용액 10ml, 30% ammonium thiocyanate 용액 0.2ml, 20mM ferrous chloride-35% HCl 용액 0.2ml를 각각 3분 후에 500nm에서 흡광도를 측정하였다. 항산화 활성은 linoleic acid peroxidation에 대한 저해율로 나타내었고, 100-[(시료 흡광도/대조군 흡광도)×100] 값으로 나타내었다.

2) 1,1-Diphenyl-2-picrylhydrazyl(DPPH) 라디칼 소거능

뜻이 DPPH 라디칼을 소각하는 효과는 Blois 법9을 활용하였다. 즉, 0.2mM ethanolic DPPH 라디칼 용액 0.9ml에 시료용액 0.1ml를 첨가·혼합하여 10 분간 방치한 후 515nm에서의 흡광도 감소를 측정하였다. DPPH 라디칼 소거능은 [1-시료 흡광도/대 조군 흡광도]×100 값으로 나타내었다.

3) Superoxide anion 라디칼 소거능

Superoxide anion 라디칼 소거능은 Nishikimi 등10의 방법으로 측정하였다. 라디칼 생성은 NADH-PMS system을 이용하여 비교적 방법으로 이루어졌으며생성된 radical을 시료가 제거하는 정도로 측정하였다. 시료용액 0.4ml와 0.1M phosphate buffer 용액(pH 7.4)에 용해하여 제조한 60μM PMS 용액, 677μM NaOH 용액, 288μM NBT 용액을 각각 0.2ml씩 취하여 실온에서 5분간 반응 시킨 후 560nm에서의
III. 결과 및 고찰

1. 대침시간에 따른 peroxidase의 활성변화

건조저장풍 음압변화를 최소화하기 위하여는 해조류의 효소 활성화 과정이 필요하다. ccm의 대침 시간에 따른 peroxidase의 활성 변화는 (Fig. 1)과 같다. 그림에서와 같이 곡선이 수평을 그리는 시간은 1분 대침 후였다. 따라서 대침시간 1분을 효소의 활성화가 거의 이루어지는 시간으로 추정하고 1분간 대침 다음 동정, 열풍, 천일간조하였다.

현재 해조류 가공품은 주로 해조류를 체결하여 체질한 그대로로 건조하여 판매되고 있는 실정으로 건조·저장조건에 따라 해조류 가공품의 품질이 결정된다고 할 수 있다. 그러나, 해조류의 가공에 관한 연구는 아직 미흡한 실정으로 해조류의 가공 저장 중 품질을 유지하기 위한 더 많은 연구가 앞으로 이루어져야 할 것으로 보인다.

2. 다양 무기질 함량 변화

건조방법에 따른 대온의 다양 무기질 함량의 변화는 (Table 2)와 같다. K와 Na의 경우 건조방법에 따른 함량의 차이를 보이지 않았으며, 이러한 실험 결과는 무기질이 열이나 빛에 의한 노출에 의해 파괴되지 않는다는 보고와 일치하는 결과였다. Ca와 Mg는 동결건조시 무기질 함량이 가장 잘 유지되는 것으로 나타났다.
3. 미량 무기질 함량 변화

동의 미량 무기질 함량에 건조방법이 미치는 영향은 Table 3과 같다. Fe와 Mn의 함량은 천일견조 시험을 보면 감소하였으며, Zn도 동결건조시 가장 높은 함량이다. Cu는 건조방법에 의한 영향을 받지 않는 것으로 나타났다.

이상과 같이 무기질 함량은 무기질마다 건조방법에 의한 영향을 얻고 나타났으나, 대체적으로 건조 방향에 상관없이 잘 유지되고 있었다.

4. Vitamin C 및 β-carotene, α-tocopherol 함량 변화

건조방법에 따른 Vitamin C 및 β-carotene, α-tocopherol의 함량은 Table 4와 같다. Vitamin C 함량은 동결건조시 가장 많았고 그 다음이 열풍, 천일건조 순이었다. 동결건조에 비해 열풍건조와 천일건조 각각 25%, 45% 감소는 것으로 보아 주로 천일건조법을 이용하고 있는 현재의 해조류 발달법은 상당한 양의 Vitamin C 손실이 있을 것으로 생각된다. Vitamin C는 높은 온도와 빛 등에 불안정한 성분으로 건조과정 중 산화되기나 파괴되는 것으로 보인다.

β-Carotene 함량도 동결, 열풍, 천일건조 순으로 높았으며, 손실되는 양이 열풍건조시 14.5%, 천일건조시 27.9%였다. Dellamonica와 McDowel(16)은 당근을 가지고 건조방법에 따라 당근의 β-carotene 함량이 어떻게 변화하는지 조사하였는데, 신선한 상태보다 동결건조시 30%, 평행건조시 35%, 천일건조시 43% 감소하여 역시 천일건조시 가장 많이 손실되었다고 하였다. 이는 β-carotene의 isoprenoid side chain이 빛과 열 등의 영향으로 이중결합의 자동산화가 일어날 때의 원인으로 판단된다.

α-Tocopherol은 천일건조시 함량이 가장 낮았다.

<table>
<thead>
<tr>
<th>Algae</th>
<th>Drying method</th>
<th>Macro-mineral (% / d.w.)</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Freeze drying</td>
<td>4.29±0.38a</td>
<td>0.72±0.01ab</td>
<td>0.39±0.01ab</td>
<td>1.65±0.05a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot-dir drying</td>
<td>3.88±0.07a</td>
<td>0.69±0.01b</td>
<td>0.37±0.02b</td>
<td>1.63±0.02a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sun drying</td>
<td>3.90±0.03a</td>
<td>0.73±0.03a</td>
<td>0.41±0.01a</td>
<td>1.59±0.03a</td>
<td></td>
</tr>
</tbody>
</table>

1) Mean±S.D.; means within each column with different letters(a-c) differ significantly(p<0.05); d.w.: dry weight
2) HF, Hizikia fusiformis

<table>
<thead>
<tr>
<th>Algae</th>
<th>Drying method</th>
<th>Macro-mineral (ppm / d.w.)</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Freeze drying</td>
<td>52.89±0.69a</td>
<td>4.77±0.14a</td>
<td>11.24±0.08a</td>
<td>11.59±0.53a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot-air drying</td>
<td>51.58±1.09ab</td>
<td>4.42±0.46ab</td>
<td>10.05±0.34b</td>
<td>10.59±0.51a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun drying</td>
<td>50.97±0.86b</td>
<td>4.11±0.23b</td>
<td>10.36±0.22b</td>
<td>10.71±0.65a</td>
<td></td>
</tr>
</tbody>
</table>

1) Mean±S.D.; means within each column with different letters(a-c) differ significantly(p<0.05); d.w.: dry weight
2) HF, Hizikia fusiformis

<table>
<thead>
<tr>
<th>Algae</th>
<th>Drying method</th>
<th>Vitamin (mg/100g d.w.)</th>
<th>Vitamin C</th>
<th>β-Carotene</th>
<th>α-Tocopherol</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Freeze drying</td>
<td>89.95±0.41a</td>
<td>14.99±0.78a</td>
<td>7.63±0.23a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot-air drying</td>
<td>69.16±0.76b</td>
<td>12.81±2.21b</td>
<td>5.86±1.13b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sun drying</td>
<td>50.75±0.48c</td>
<td>10.81±0.48c</td>
<td>4.72±0.80c</td>
<td></td>
</tr>
</tbody>
</table>

1) Mean±S.D.; means within each column with different letters(a-c) differ significantly(p<0.05); d.w.: dry weight
2) HF, Hizikia fusiformis
5. 총 polyphenol 함량 변화

건조방법을 달리했을 때 흰 녹색 alga의 총 polyphenol 함량의 변화는 (Table 5)와 같다. 동결건조 시간의 증가에 따라 총 polyphenol 함량이 가정 높았고, 50℃의 열처리로 건조시켰을 경우에는 동결건조와 거의 차이가 없었다.

<table>
<thead>
<tr>
<th>Algae</th>
<th>Drying method</th>
<th>Total polyphenol (mg/g d.w.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>Freeze drying</td>
<td>9.76 ± 0.20g</td>
</tr>
<tr>
<td>HF</td>
<td>Hot-air drying</td>
<td>9.64 ± 0.18g</td>
</tr>
<tr>
<td>HF</td>
<td>Sun drying</td>
<td>6.87 ± 0.33g</td>
</tr>
</tbody>
</table>

1) Mean ± S.D.; means with different letters (a-c) differ significantly (p<0.05); d.w.: dry weight
2) HF: Hizikia fusiformis

표 5: 총 polyphenol 함량의 변화량

6. 항산화 활성의 변화

건조방법에 따른 녹색 alga의 항산화 활성은 해조류의 유기용매 분말과 증활성이 가장 우수했던 ethyl acetate 분말음을 이용하였으며, 이에 대한 자세한 내용은 현재 발표안이 중에 있다.

Linoleic acid 산화 저해능은 동결건조, 열동건조, 천연건조 순으로 높았다 (Table 6). 특히 천연건조는 동결건조와 열동건조에 비해 유의적으로 높게 나타났다. (Table 6). Standley 등(20)도 rooibos tea 천연건조시 DPPH 라디칼 소거능이 39%나 감소했다고 보고 하여 본 실험과 유사한 결과를 보였다. Jimenez-E و Giovaneli 등(21)은 열동건조에서도 DPPH 라디칼 소거능이 유의적으로 강한 것으로 나타났다. 그러나 이 독자원은 각각 50℃에서 48시간, 80℃에서 압해졌고, 50℃에서 하룻밤 정도의 열처리를 한 본 실험보다는 좀 더

표 6: 건조방법에 따른 생성화 활성

<table>
<thead>
<tr>
<th>Drying methods</th>
<th>LI</th>
<th>DS</th>
<th>SS</th>
<th>HS</th>
<th>HPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze drying</td>
<td>42.20 ± 0.17g</td>
<td>52.73 ± 0.40g</td>
<td>37.43 ± 0.45g</td>
<td>34.15 ± 0.54g</td>
<td>58.01 ± 0.33g</td>
</tr>
<tr>
<td>Hot-air drying</td>
<td>40.55 ± 1.01g</td>
<td>53.04 ± 0.79g</td>
<td>37.32 ± 0.65g</td>
<td>32.57 ± 0.43g</td>
<td>57.44 ± 0.95g</td>
</tr>
<tr>
<td>Sun drying</td>
<td>31.30 ± 0.43g</td>
<td>36.20 ± 5.17g</td>
<td>33.66 ± 0.62g</td>
<td>24.28 ± 0.72g</td>
<td>44.22 ± 0.89g</td>
</tr>
</tbody>
</table>

1) LI: linoleic acid peroxidation inhibitory activity
 DS: DPPH radical scavenging activity
 SS: superoxide anion radical scavenging activity
 HS: hydroxyl radical scavenging activity
 HPS: hydrogen peroxide scavenging activity
심한 열처리를 받는 조건에서 행해졌기 때문에 본 실험에서 에너한 영양건에 의한 DPPH 라디칼 소거능이 크게 감소한 것으로 사료된다.

Superoxide anion 라디칼 소거능도 (Table 6)과 같이 동결건조, 열풍건조, 천일건조 순으로 높았다. 열풍건조는 동결건조에 비해 유의적인 차이는 보이지 않았으나 천일건조에서는 유의적으로 감소하였다.

건조방법에 따른 뱃의 hydroxyl 라디칼 소거능의 변화 역시 동결건조, 열풍건조, 천일건조 순으로 높았다 (Table 6). 열풍건조는 동결건조에 비해 조금 감소하였으나, 천일건조는 25% 감소하여 천일건조에 의한 hydroxyl 라디칼 소거능 감소가 더욱 큰 것으로 나타났다.

롯의 건조방법별 hydrogen peroxide 소거능 측정 결과는 동결건조와 열풍건조시에는 소폭의 감소가 있었으나 유의적인 차이는 없었고, 천일건조시에는 동결건조보다 23.8% 감소하였다 (Table 6).

이상과 같이 롯의 칼슘과 산화 저해능과 라디칼 소거능은 건조방법에 의한 영향을 받는 것으로 나타났다. 천일건조가 가장 높았고, 열풍건조시에는 소거하는 라디칼 종류에 따라서 차이는 있으나 천일건조를 만큼 감소율이 높지는 않은 것으로 보인다. Giovaneli 등 24)은 제소, 과일류를 가공했을 때 항산화능의 변화는 lycopene나 친유성 성분보다는 ascorbic acid나 polyphenol은 친수성 성분에 의해 일어나는 것으로 알려져 있다. 이들 성분은 열풍건조와 천일건조시에 발효되는 열처리와 장시간 햄빛에 의한 산화적 스트레스에 예방하여 결과적으로는 가공 처리한 최종 제품의 항산화능에도 변화를 가져오게 된다. 따라서 건조가공법을 많이 이용하는 식품제료인 경우 친수성 항산화성분의 영과 산화적 분해를 최소화하는 방향으로 가공법이 모색되어야 할 것으로 사료된다.

7. 롯의 무기질, 비타민, 총 polyphenol 함량과 항산화 활성간의 상관관계 분석

롯의 무기질, 비타민, 총 polyphenol 함량과 항산화 활성간의 상관관계는 (Table 7)과 같다. 총 polyphenol 함량이 칼슘과 산화

TABLE 7 Correlation coefficients (r) for minerals, vitamins, total polyphenol and antioxidant activities 1) of Hizikia fusiformis

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
<th>VC</th>
<th>β-C</th>
<th>α-T</th>
<th>TP</th>
<th>LI</th>
<th>DS</th>
<th>SS</th>
<th>HS</th>
<th>12PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>1.00</td>
<td>0.985</td>
<td>0.842</td>
<td>0.910</td>
<td>0.985</td>
<td>0.983</td>
<td>0.997</td>
<td>0.768</td>
<td>0.734</td>
<td>0.841</td>
<td>0.761</td>
<td>0.836</td>
<td>0.768</td>
</tr>
<tr>
<td>Mn</td>
<td>1.00</td>
<td>0.737</td>
<td>0.826</td>
<td>1.00*</td>
<td>0.999</td>
<td>0.993</td>
<td>0.996</td>
<td>0.867</td>
<td>0.839</td>
<td>0.921</td>
<td>0.861</td>
<td>0.917</td>
<td>0.869</td>
</tr>
<tr>
<td>Zn</td>
<td>1.00</td>
<td>0.989</td>
<td>0.737</td>
<td>0.728</td>
<td>0.794</td>
<td>0.302</td>
<td>0.416</td>
<td>0.251</td>
<td>0.291</td>
<td>0.407</td>
<td>0.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1.00</td>
<td>0.826</td>
<td>0.819</td>
<td>0.873</td>
<td>0.435</td>
<td>0.542</td>
<td>0.387</td>
<td>0.425</td>
<td>0.533</td>
<td>0.435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td></td>
<td>1.000</td>
<td>0.999*</td>
<td>0.996</td>
<td>0.866</td>
<td>0.839</td>
<td>0.921</td>
<td>0.861</td>
<td>0.917</td>
<td>0.867</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-C</td>
<td></td>
<td>1.000</td>
<td>0.995</td>
<td>0.873</td>
<td>0.846</td>
<td>0.926</td>
<td>0.868</td>
<td>0.922</td>
<td>0.873</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-T</td>
<td></td>
<td>1.000</td>
<td>0.818</td>
<td>0.787</td>
<td>0.882</td>
<td>0.812</td>
<td>0.878</td>
<td>0.818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.998*</td>
<td>0.992</td>
<td>0.999*</td>
<td>0.993</td>
<td>1.000*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.984</td>
<td>0.999</td>
<td>0.986</td>
<td>0.998*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.991</td>
<td>0.999*</td>
<td>0.992*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.992</td>
<td>0.999*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
<td>0.993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPS</td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

1) VC: vitamin C, β-C: β-carotene
α-T: α-tocopherol, TP: total polyphenol
LI: linoleic acid peroxidation inhibitory activity
DS: DPPH radical scavenging activity
SS: superoxide anion radical scavenging activity
HS: hydroxyl radical scavenging activity
HPS: hydrogen peroxide scavenging activity

* significant at p<0.05
저해능. 라디칼소거능과 상관관계가 유의적으로 높은 것으로 나타났으며, 총 polyphenol 함량이 많을수록 항산화 활성이 우수함을 알 수 있었다. 따라서 이상의 결과에서 볼 때 드의 총 polyphenol이 항산화 활성에 상당한 기여함을 알 수 있었다. 총 polyphenol 함량은 동결건조법에 비해 염증건조와 천일 건조시켰을 경우 그 함량이 크게 저하되었고, 항산화 활성 역시 저하되는 것이 확인되었다. 그러므로 건조방법으로는 동결건조 시키는 것이 드를 건조시키는 동안 총 polyphenol 함량의 손실을 최소화하면서 항산화활성도 최대한으로 유지할 수 있을 것으로 사료된다.

IV. 요약 및 결론

본 연구는 제주도 연안에서 서식하고 있는 해조류인 드를 가지고 해조류를 재배하여 저장하기 위해 건조 시켰을 때 건조 처리법에 따른 드의 무기질, Vitamin C, β-carotene, α-tocopherol, 총 polyphenol 등의 생리 활성 성분 함량과 항산화활성의 변화를 측정하였다. 무기질인 경우는 무기질 중류에 따라 약간의 차이는 있었으나 대체적으로 함량이 잘 유지되고 있었고, Vitamin C와 β-carotene, α-tocopherol, 총 polyphenol 함량은 동결건조, 염증건조, 천일건조의 순으로 높았 다. 현재 보편적으로 이용되고 있는 천일건조인 경우 생리활성 성분들의 손실이 컸으며 또한 이에 따라 항산화 활성이 감소하는 것으로 나타났다. 상관관계 분석 결과 드의 항산화 활성은 총 polyphenol 함량과 상관성이 높은 것으로 나타났다. 본 실험에서 동결 건조를 했을 경우 총 polyphenol 함량 보유율이 가장 높으나 한편, 동결건조는 경제적으로 비용이 많이 듦는 단점이 있다. 총 polyphenol 함량은 빚에 약한 성분으로 따라서 빚에 노출되는 시간을 최대한으로 줄이면서 경제적인 부담이 적은 건조법에 대한 새로운 연구가 있어야 하리라고 본다.

■참고문헌

