Multiplex PCR Using Conserved and Species-Specific 16S rDNA Primers for Simultaneous Detection of *Fusobacterium nucleatum* and *Actinobacillus actinomycetemcomitans*

KIM, MI-KWANG¹, HWA-SOOK KIM², BYUNG-OCK KIM², SO YOUNG YOO³, JIN-HYO SEONG⁴, DONG-KIE KIM⁵, SHEE EUN LEE⁵, SON-JIN CHOE⁶, JOO-CHEOL PARK⁷, BYUNG-MOO MIN⁸, MOON-JIN JEONG⁹, DO KYUNG KIM¹, YONG-KOOK SHIN⁶, and JOONG-KI KOOK¹²*¹

¹Department of Oral Biochemistry, and ²Oral Biology Research Institute, and ³BK21, College of Dentistry, Chosun University, Gwangju 501-759, Korea
²Department of Dental Pharmacology, College of Dentistry, Chonnam National University, Gwangju 500-757, Korea
³Department of Oral Microbiology and Immunology, ¹Department of Oral Biochemistry, College of Dentistry, Seoul National University, 28 Yeonkun-Dong, Chongno-ku, Seoul 110-749, Korea
⁴Division of Genome Resources Bank and Reservation, National Genome Research Institute, National Institute of Health, Seoul 122-701, Korea

Received: May 28, 2003
Accepted: September 20, 2003

Abstract This study was undertaken to develop PCR primers for the simultaneous detection of *Fusobacterium nucleatum* and *Actinobacillus actinomycetemcomitans*, using two species-specific reverse primers in combination with a single conserved forward primer. These primers target the variable and conserved regions of the 16S rDNA. The primer specificity was tested against (i) four *F. nucleatum* and three *A. actinomycetemcomitans* strains and (ii) seven representatives of the different species of oral bacteria. The primer sensitivity was determined by testing serial dilutions of the purified genomic DNA of *F. nucleatum* and *A. actinomycetemcomitans*. The data indicate that species-specific amplicons could be obtained for all the *F. nucleatum* and *A. actinomycetemcomitans* strains tested, which were not found in the seven other species. The multiplex PCR could detect as little as 4 fg of chromosomal DNA of *F. nucleatum* and *A. actinomycetemcomitans* simultaneously. These findings suggest that these PCR primers are highly sensitive and are suitable for applications in epidemiological studies, diagnosis, and monitoring *F. nucleatum* and *A. actinomycetemcomitans* after the treatment of periodontitis.

Key words: Actinobacillus actinomycetemcomitans, *Fusobacterium nucleatum*, multiplex PCR, 16S rDNA

Periodontitis refers to a set of diseases that cause inflammation and the loss of the supporting structures of the teeth [25]. The major causative factor of periodontitis is dental plaque. The major putative pathogens known to be involved in destructive periodontal diseases include *Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Campylobacter rectus, Eikellera corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia*, and spirochetes [6]. *F. nucleatum* has been frequently associated with periodontitis [3, 27, 31], and may play a role in disease by providing an anaerobic environment necessary for the growth of pathogens [7]. *F. nucleatum* strains have been shown to be able to coaggregate all species of oral bacteria tested, thereby acting as a bridge between the early and late colonizers in the development of dental plaque on tooth surfaces [16]. *F. nucleatum* was also shown to be able to modulate the secondary immune response of T-cells to *A. actinomycetemcomitans* [23]. *A. actinomycetemcomitans* is the major pathogen in localized juvenile periodontitis [15, 32] and is known to be a cause of infective endocarditis [28]. The virulence factors of this organism have been reported to be leukotoxin, cytolysin, disintegrating toxin, collagenase, chemotaxis inhibitor, and lipopolysaccharide (LPS) [9, 12, 17, 22, 26].

The major putative pathogens have to be identified in order to assess the epidemiology of the periodontal pathogens in addition to the diagnosis, treatment, and prognosis of periodontal diseases, and many studies showed several putative periodontal pathogens which could be detected by individual PCRs [1–3, 21] or by multiplex PCRs [5, 20, 26]. The use of multiplex PCR is highly economical in saving time, cost, and experimental effort, compared to the
individual PCR as well as other bacterial identification methods, including the cell culture, DNA probe method [10], 16S rRNA sequencing, and ribotyping. Therefore, multiplex PCR has been widely applied for identifying the various bacterial species. 16S rDNA can effectively be used for multiplex PCR assays, because 16S rDNA is found universally in all prokaryotic organisms and a comparative analysis of 16S rDNA has shown that the variable sequence regions are interspersed with highly conserved regions [30].

In order to examine the combined effect of the two species on the progression of periodontitis, an accurate and simple method to identify these two bacterial species need to be developed. Therefore, the aim of this study was to develop, optimize, and evaluate multiplex PCR primers using a single 16S rDNA-directed conserved forward primer combined with two species-specific reverse primers for simultaneous detection of F. nucleatum and A. actinomycetemcomitans. After evaluating the method with four F. nucleatum and three A. actinomycetemcomitans strains as well as seven representatives of the different species of oral bacteria, multiplex PCR was compared with single PCRs by applying multiplex PCR to 20 clinical samples from subgingival plaque.

MATERIALS AND METHODS

Bacterial Strains and Growth Condition

The bacterial strains used were as follows: Fusobacterium nucleatum subsp. nucleatum ATCC 25586, F. nucleatum subsp. fusiforme ATCC 51190, F. nucleatum subsp. polymorphum ATCC 10953, F. nucleatum subsp. vincentii ATCC 49256, Actinobacillus actinomycetemcomitans ATCC 43717, A. actinomycetemcomitans ATCC 43718, A. actinomycetemcomitans ATCC 33384, Haemophilus aphrophilus ATCC 33389, H. paraphrophilus ATCC 29241, H. paraphrophilus ATCC 29242, H. parasrafluenzae ATCC 33392, Prevotella intermedia ATCC 25611, P. nigrescens ATCC 33563, Porphyromonas gingivalis ATCC 53978, and Porphyromonas endodontalis ATCC 35406. All the strains were obtained from the American Type Culture Collection (ATCC, Rockville, MD, U.S.A.). A. actinomycetemcomitans was grown in a medium composed of tryptic soy broth (TSB) (Difco Laboratories, Detroit, MI, U.S.A.) supplemented with 0.6% yeast extract, 5% horse serum, 75 mg/ml of bacitracin, and 5 mg/ml of vancomycin (Sigma Chemical Co., St. Louis, MO, U.S.A.). H. aphrophilus, H. paraphrophilus, and H. parasrafluenzae were grown in TSB supplemented with 0.5% yeast extract, 0.5 mg/ml of hemin, and 2 μg/ml of vitamin K. All the above species were grown in an incubator containing air and 5% CO₂ at 37°C. F. nucleatum, P. intermedia, P. nigrescens, P. gingivalis, and P. endodontalis were cultured at 37°C in TBS supplemented with 0.5% yeast extract, 0.05% cysteine HCl-H₂O, 0.5 mg/ml of hemin, and 2 μg/ml of vitamin K, in an anaerobic chamber under 10% H₂, 5% CO₂, and 80% N₂.

Bacterial Genomic DNA preparation

The bacteria were grown to the mid-log phase in 100 ml of medium and were harvested by centrifugation at 7,000 xg for 10 min. The whole genomic DNA was isolated using a modification of the method of Lippke et al. [14]. Briefly, the cell pellets were resuspended by vortexing in 5 volumes of a cell lysis buffer [5 M guanidine isothiocyanate, 50 mM Tris-HCl (pH 7.6), 10 mM EDTA, 2% S-lauryl sarcosine, 140 mM 2-mercaptoethanol]. The bacterial genomic DNAs were purified by the phenol/chloroform extraction method instead of the cesium chloride [19]. The DNA concentrations were determined spectrophotometrically at 260 and 280 nm (Ultraspex 2000, Pharmacia Biotech., Cambridge, U.K.).

Primer Design

A forward primer, which is conserved in the 16S rDNA sequence of both F. nucleatum and A. actinomycetemcomitans, and the two reverse primers, which are each specific to F. nucleatum and A. actinomycetemcomitans, were designed using the program PRIMER3 (DNASTAR Inc., Madison, WI, U.S.A.). The 16S rDNA sequences of F. nucleatum and A. actinomycetemcomitans strains stored in the GenBank EMBL database were used as DNA templates in PRIMERS. The strains and GenBank accession numbers are as follows: F. nucleatum subsp. nucleatum ATCC 25586 (AJ133496), F. nucleatum subsp. vincentii ATCC 49256 (AJ006994), A. actinomycetemcomitans ATCC 43718 (M75035), A. actinomycetemcomitans ATCC 33384 (M75039), A. actinomycetemcomitans ATCC 29522 (M75036), A. actinomycetemcomitans ATCC 29524 (M75037), and A. actinomycetemcomitans ATCC 29523 (M75038). The specificity of the prospective primers was tested using the program, PROBE Match, from the Ribosomal Database Project II (http://rdp.cme.msu.edu/html/analyses.html). No sequence completely homologous to the F. nucleatum and

16S rRNA gene

![Diagram](image_url)

Fig. 1. Multiplex PCR using the conserved and species-specific 16S rDNA primers for the simultaneous detection of F. nucleatum (Fn) and A. actinomycetemcomitans (Aa). A schematic drawing of the location where the primers anneal to the bacterial 16S rDNA is shown. The approximate sizes of the species-specific amplicons generated are also depicted.
A. actinomyctemcomitans reverse primers was found in the 16S rDNAs for the other oral bacterial species in these databases. The nucleotide sequences of the three selected primers were as follows: conserved forward primer (All-F6), 5'-CGG GAG GCA GCA GTG GGG AAT-3'; F. nucleatum reverse primer (Fn-R6), 5'-TTG CTG GGC CGC TGA GGT TC; and A. actinomyctemcomitans reverse primer (ChDC-AaR), 5'-CAT CGC TGG TGG GTT ACC CTC TG-3'. The expected product lengths were 495-bp and 923-bp for F. nucleatum and A. actinomyctemcomitans, respectively (Fig. 1).

Specificity and Sensitivity of the PCR

PCR was performed to validate the primer specificity and to determine the detection limit of the PCR primers. The specificity of PCR was evaluated by testing three A. actinomyctemcomitans and four F. nucleatum, as well as seven representatives of the different species of oral bacteria (aliquots of 4 ng of nucleic acid). For the sensitivity test of the multiplex PCR, the lower limit of detection was defined as the smallest amount of bacterial genomic DNA that could be detected by the multiplex PCR. This was determined by a serial dilution of a mixture of genomic DNA from F. nucleatum ATCC 25586 and A. actinomyctemcomitans ATCC 33277; and was found to range from 4 ng to 4 fg by 10-fold dilutions.

The designed oligonucleotide primers were obtained from BIONEER Corp., Seoul, Korea. The PCR was performed using an AccuPower® PCR PreMix (BIONEER Corp., Daejeon, Korea), which contained 5 nmole each of deoxynucleoside triphosphate, 0.8 μmole KCl, 0.2 μmole Tris-HCl (pH 9.0), 0.03 μmole MgCl₂, and 1 unit of Taq DNA polymerase. The bacterial genomic DNA and 20 pmole each of primer were added to a PCR PreMix tube. PCR was carried out in a final volume of 20 μl. The PCR reaction was performed for 32 cycles on a Peltier thermal cycler (Model PTC-200 DNA engine™, MJ Research Inc., Watertown, MA, U.S.A.) under the following conditions: denaturation at 94°C for 1 min, primer annealing at 68°C for 30 sec, and extension at 72°C for 1 min. The final cycle included an additional 10 min extension at 72°C. A 2 μl aliquot of the reaction mixture was analyzed by 1.5% agarose gel electrophoresis in a Tris-acetate buffer [0.04 M Tris-acetate, 0.001 M EDTA, (pH 8.0)] at 100 V for 30 min. The amplification products were stained with ethidium bromide and visualized by UV transillumination.

Coincidence Test of Multiplex PCR and Single PCR Using Plaque Samples

In order to determine whether the results derived from multiplex PCR and single PCRs were coinciding, the PCRs were performed with subgingival plaque samples collected from 20 adult periodontitis patients by following procedures approved by the University of Chosun Institutional Review Board. A subgingival plaque sample was collected from a molar tooth of each subject; the teeth met all of the following criteria for periodontitis: gingival index of 3 and a probing depth of ≥6 mm. The plaque samples were taken using sterile paper point, and placed in 500 μl 1× PBS. Bacterial DNAs from the plaque sample were extracted using the direct DNA extraction method described by Lee et al. [12]. A 50 μl aliquot of a plaque sample was mixed with 50 μl of a 2× Lysis buffer (2 mM EDTA-1% Triton X-100), and the mixture was boiled for 10 min. Three 4 μl aliquots of the plaque lysate were prepared and transferred to three PCR premix tubes; one tube for multiplex PCR and two tubes for single PCRs, each with primers All-F6 and Fn-R6, and with All-F6 and ChDC-AaR. The PCR conditions were the same as described above.

RESULTS AND DISCUSSION

The specificity of the multiplex PCR primers was tested by performing PCR, using genomic DNAs purified from seven other representative strains of oral species chosen for this study. The PCR products showed that the DNA bands of the predicted size were 495 and 925 bp for the F. nucleatum and A. actinomyctemcomitans genomic DNAs, respectively (Fig. 2). On gel electrophoresis, the PCR products displayed DNA bands with predicted sizes of 495 and 925 bp for the F. nucleatum and A.
actinomyceseomcomitans genomic DNAs, respectively (Fig. 2).

However, the PCR amplicons did not occur with the seven other bacterial species. The multiplex PCR could clearly distinguish A. actinomyceseomcomitans from closely related *Helicobacter spp.* [8]. In addition, neither of our species-specific reverse primers showed a complete homology to the 16S rDNA of any other oral species found in the current sequence databases. This suggests that similar results would have been obtained if pure cultures of additional species had been evaluated. Under optimal conditions, PCR with primers All-F6 and Fn-R6 detected as little as 4 fg of the purified genomic DNA of *F. nucleatum* ATCC 25586 as well as the other four strains of *F. nucleatum* (Fig. 3). In addition, PCR with primers All-F6 and ChDC-AaR also detected as little as 4 fg of the purified genomic DNA of *A. actinomyceseomcomitans* ATCC 33277 (Fig. 4). The sensitivity of the multiplex PCR with primers All-F6, Fn-R6, and ChDC-AaR was the same as that of the single PCRs (Fig. 5), thus manifesting that the multiplex PCR primer set could detect the strains of *F. nucleatum* (genome size; 2.17 Mb) and *A. actinomyceseomcomitans* (genome size; 2.1 Mb) simultaneously.

Since the DNA extraction method for the bacterial pure culture was different from that for dental plaque, it seems likely that the conditions of the DNAs prepared from the two sources may be dissimilar. As described in Materials and Methods, a direct DNA extraction method was employed to expedite the processing of DNAs from plaque samples. Therefore, there may be different detection limits for the multiplex PCR, depending on the sources of DNAs prepared. It was recently reported that a direct DNA extraction method could be applied to clinical specimens to detect *Vibrio vulnificus* by PCR [13]. In that experiment, clinical specimens or bacterial cells were boiled in 1 mM EDTA-0.5% Triton X-100 buffer and the lysates were used in PCR. The present study tested whether the 1 mM EDTA-0.5% Triton X-100 lysis buffer was effective in preparing the cell lysate from a single colony of *F. nucleatum* or *A. actinomyceseomcomitans* for PCR, and found that the specificity of multiplex PCR with the cell lysate was identical to those obtained using the purified genomic DNAs (data not shown). However, the sensitivity of both single and multiplex PCRs carried out with the bacterial cell lysate was 10-fold lower. This might have been due to an inhibition of PCR by cellular components of the lysates or by the detergents present in the lysis buffer.

In addition, two sets of single PCR performed with primers All-F6 and Fn-R6, and All-F6 and ChDC-AaR,
could be used in detecting *F. nucleatum* and *A. actinomycetemcomitans*, respectively. For the detection of *A. actinomycetemcomitans*, several PCR primers were designed based on the 16S rDNA [1] and leukotoxin gene [24]. As for *F. nucleatum*, PCR primers were also designed based on the 16S rDNA [11, 18]. The PCR primers reported in the present study would be a valuable addition to the list of already available primers for the two bacterial species. In the laboratory, two or three sets of PCR primers are routinely used to identify the bacteria grown on agar plates at the species level, and the resulting PCR data generally coincided with the 16S rDNA cloning and sequencing data.

In the coincidence test, the intensity and size of the amplicons of the multiplex PCR were similar to those of the two sets of single PCR (Fig. 6), indicating that the multiplex PCR can be used to simultaneously detect and identify *F. nucleatum* and *A. actinomycetemcomitans* from specimens such as dental plaques.

In summary, the present data reveal that the multiplex PCR primer set (Al-F6, Fn-R6, and ChDC-AaR) is highly sensitive and specific. These primers could potentially be used in epidemiological studies, diagnosis, and monitoring *F. nucleatum* and *A. actinomycetemcomitans* from dental plaque samples before and after periodontal treatments.

Acknowledgment

This work was supported by Korea Research Foundation Grant (KRF-2001-002-F00153) (J.-K. Kook and B.-O. Kim).

REFERENCES

