Quality Characteristics of Tofu Added with Black Soybean Hull Powder

Jean Kim* and Jeong Ryae Jeon**

Dept. of Hotel Culinary Arts, Sackyang College*, Dept. of Food and Nutrition, Yeungnam University**

(Received August 30, 2005)

Abstract

The effects of adding hull powders of black soybean on quality characteristics of tofu were studied. Proximate composition of the black soybean hull powders was crude ash, crude protein, crude fat, and carbohydrate at 2.60, 11.35, 2.18, and 73.97%, respectively. The addition of 5% black soybean hull powder decreased the production of whey and consequently increased the yield of tofu. Texture properties of evaluation hardness, adhesiveness, chewiness were the best in tofu which was made with 5% black soybean hull powders. Sensory evaluation showed texture, firmness were not significantly different among tofu with yellow soybean, black soybean, and added to 0.5% black soybean hull powders. At the beginning of the period of storage, there were not differences of microbial cell count as increasing black soybean hull powders, but observed after passing 5 days. The results of total microbial cell count showed that adding 5% black soybean hull powders in processing tofu extend storage time.

Key Words: yellow soybean, black soybean, 0.5% black soybean hull powder, tofu

1. 서 론

두부는 콩제품 중 가장 대중적인 전통적인 가공품으로 lysine과 같은 필수 아미노산이 풍부하며, 대두의 수용성 단백질을 용출하여 감칠맛이나 맛과의 응을 함유한 약에 의해 얻어, 제조하는 것으로 두유에 존재하는 다양한 영양성분과 함께 존재하는 우수한 식품이다. 국민생활의 향상으로 기능성이 강화된 건강식품으로 각광을 받고 있으며, 특히, 녹차, 마늘, 인삼, 콜레스테롤, 키또 등 다양한 생리활성 성분을 함유하고 있는 천연소재를 두부에 첨가하여 두부의 영양적인 측면과 함께 두부의 기능성을 보완하고 저장성을 향상시키려는 연구들이 활발하게 진행되고 있다. 최근에는 콩식품의 생물조절기능에 대한 연구가 활발하게 이루어지면서 영양작용이나 콜레스테롤 농도 저하효과와 같은 추출물에 단백질 이외에 iso flavone, phytic acid, saponins, trypsin inhibitor 등의 기능성 성분이 함유되어 있으며, iso flavone의 배달체인 genistein 등은 인체에서 분리한 유방암, 전립선암, 간암예방 등이 성장자해작용과 세포분화를 촉진 및 변연증진 효과가 매우 높은 것으로 보고하였다. 특히 검정콩은 동물보감에 의하면 검정콩의 종피가 열매를 사양(癒傷)하고, 풍을 소통시키며, 시량증진 및 뇌를 맑게 하고 두통치료에 효과가 있으며, 검정콩은 노란콩과 비교시 항산화 효과가 높았으며, 이는 콩껍질의 구소성소인 안토시아닌 함량과 높은 판연성이 있음을 보고 하였다. 뿔탈이콩(약콩)의 콩껍질과 콩껍질과 속으로 분리하여 항산화 효과 및 콩 해성화 화합물의 항암효소를 탐색한 결과, 노란콩에 비해 검정콩 등에서 항산화효과가 높았고, 부위별로는 콩의 겉질에서 높은 항산화 활성을 보였고, 높은 콩해성화 화합물 함유량을 보고하고 있어 항산화 활성이 유족한 부위를 보고하였다. 또한 콩제품 가공시의 부분적으로 빠지는 콩껍질에는 70%이상의 식이섬유가 함유되어 있으며, iso flavone5나 antocyanin 색소등을 함유하고 있어 생리학적 효과와 함께 기능성 식품으로 활용이 기대된다. 따라서 본 연구에서는 검은콩 겉질을 이용하여 항산화 활성과 식이섬유의 함량이 높은 검은콩 겉질을 0.5%, 5.0% 정도 두부를 제조하여 검은 두부와 검은 두부와 함께 풍질특성을 비교하였다.
1. 재료 및 방법

1. 실험재료
본 실험이 사용된 곡 식료물은 평균 평균, 김경종은 100℃정조가에서 상업가열
전조법으로, 조미물은 Soxhlet 추출법으로, 조단백은 Kjeldahl
semimicro method로 회분은 회합법으로 측정하였다.

2. 일반성분 분석
본 실험에 이용된 곡 식료물의 일반성분 분석은 AOAC에
따라 분석하였다. 즉 수분의 함량은 106℃건조기에 상업가열
전조법으로, 조미물은 Soxhlet 추출법으로, 조단백은 Kjeldahl
semimicro method로 회분은 회합법으로 측정하였다.

3. 두부의 제조
황제장, 김경종, 김경종 약물 0.5% 및 5.0% 추가 절가에 의
해 가공된 두부의 제조조건은 예비의 로 하여 가장 적은 판관
평가를 얻은 두부조직 조건으로 가공되었으며, 그 방법은 그림
D와 같이, 가공된 두부의 사진은 그림 2에 나타내었다.

4. 두부와 두부순물의 수속량 분석
가공된 종류별 두부의 수속량은 가공된 두부의 평균 수속량
으로 평가하였고, 두부순물의 수속량은 매스실린도를 이용하여
부피를 측정하였으며, 각 수속량은 3회 반복하여 측정하였고,
각 측정치의 평균값으로 계산하였다.

5. 두부의 물성평가 및 관능검사
가공된 종류별 두부의 물성을 알아보기 위해 Texturimeter
(CNS Parnell QTS 25, England)를 이용하여 두부의 중심부를
정밀한 크기(1.5cm x 1.5cm)로 절단하여 견고성(Hardness), 용
접성(Cohesiveness), 탄력성(Springiness), 접착성(Gumminess),
흡합성(Chewiness), 부착성(Adhesiveness)을 측정하였다. 평가는
35mm cylinder로 test speed의 경우 60mm/min, 반복회수 3회
로 설정하여 실시하였다.
가공된 종류별 두부의 관능평가는 12명으로 구성된 관능평
가 요원에 의해 5점 척도법으로 행하였다. 평가 항목으로 두
부의 절감, 탄력성, 전체적인 품미는 아주 좋다(5점), 좋다(4점),
보통이내(3점), 나쁘다(2점), 아주 나쁘다(1점)로 평가하였으며, 견고성, 펑은맛, 비린맛은 아주 강하다(5점), 강하다(4점), 보통
이내(3점), 나쁘다(2점), 아주 나쁘다(1점)로 평가하였다. 결과는
SPSS(SPFSS Inc., Chicago, IL)를 이용하여 Duncan의 다중위
검정으로 최소 유의차 검정(5% 유의수준)을 실시하였다.

6. 저장기간에 따른 미생물 검사
가공된 종류별 두부를 10에서 15일간 항온기에서 저장하면
서 5일 간격으로 두부를 회수하여 식품공학의 미생물 분석방
법에 따라 검사하였다. 즉, 두부를 상단에서 5cm 아래 부분에서
10g을 절단하여 면균수를 넣어 회전한 다음 Stomacher에서
분해한 액 Iml을 취하여 단계별로 회피하여 일반세균은 PCA배
지, 진균류는 FDA배지에서 접종하고 배양산은 일반세균은
35±1℃ 24-48시간, 진균류는 25℃에서 5-7일간 항온기에서
배양한 후 생성된 집락수를 각각 계산하였다.

III. 결과 및 고찰

1. 일반성분 분석

결정장을 부위별로 나누어 분석한 일반성분의 조상은 Table 1에 보이는 바와 같이 부위에 따라서 많은 차이를 보이고 있는데, 종실전체의 경우, 탄수화물(34.17%), 조단백질(37.2%), 조지방(13.18%) 순으로 일반성분을 함유하고 있었다. 종실 내용물의 경우, 조단백질(40.9%), 탄수화물(27.62%), 조지방(68.68%) 순으로 함유하고 있다. 종괴의 경우는 탄수화물(73.97%)을 다량으로 함유하고 있었으며, 조단백질은 11.35%를 함유하고 있었고, 조지방(2.18%)은 소량을 함유하고 있었다. 합성장은 분석한 일반성분의 조상은 Table 2에 나타나 있으며, 종실전체의 단반대(39.03%)로 결정장보다 함량이 높았으며, 탄수화물은 합성장(31.26%)보다는 결정장이 높았다. 종실 내용물 역시 합성장이 결정장에 비해 단백질 함량은 높았고, 탄수화물의 함량은 낮게 나타났다.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Proximate composition of black soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Whole soybean</td>
</tr>
<tr>
<td>Moisture</td>
<td>10.3</td>
</tr>
<tr>
<td>Crude ash</td>
<td>5.15</td>
</tr>
<tr>
<td>Crude protein</td>
<td>37.2</td>
</tr>
<tr>
<td>Crude fat</td>
<td>13.18</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>34.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Proximate composition of yellow soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Whole soybean</td>
</tr>
<tr>
<td>Moisture</td>
<td>10.33</td>
</tr>
<tr>
<td>Crude ash</td>
<td>5.38</td>
</tr>
<tr>
<td>Crude protein</td>
<td>39.03</td>
</tr>
<tr>
<td>Crude fat</td>
<td>14.0</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>31.26</td>
</tr>
</tbody>
</table>

2. 두부와 두부소물의 수복정 분석

여비 실험에서 판광적, 기계적으로 가장 좋은 집락수를 얻은 두부를 노화로 하고, 점기장을 달리한 결정장 점기장 검정에 혼합하여, 제조한 두부의 수복정과 이수율을 Table 3에 나타낸다. 곡식성과 결정장 점기장에 대해 가공한 두부의 수복정과 두부소물의 수복정은 거의 동일한 양상을 나타내었다. 0.5% 및 5%의 결정장 점기장 첨가하여 두부를 제조한 경우 첨가된 결정장 점기장에 인해 합성 및 결정 두부에서 배해 두부의 수복정은 높이 증가하는 양상을 나타내었다. 그러나 두부소물의 경우, 0.5% 및 5%의 결정장 점기장 첨가한 경우 합성 및 결정 두부에 사료 두부에서 배해 두부의 수복정이 감소하는 양상을 나타내었다. 이는 첨가하는 결정장 점기장의 수복정 및 두부 수복정 배합은 배합의 수복정 성분이므로 상상적으로 두부소물을 구성하는 수복성 단백질 대비 불용성 단백질의 함량 증가에 기인한 결과로 추측된다.

3. 두부의 물성 평가

가공된 중류별 두부의 물성을 측정한 결과는 Table 4의와 같이, 건조성을에서 합성장, 결정장 및 0.5% 결정장 점기장 첨가 두부는 유익적인 차이가 인정되지 않았다. 그러나 5% 결정장 점기장 첨가 두부의 경우 건조성이 증가한 양상으로 조사 되었는데, 이는 검은글 점기장의 점기장에 인해 상대적으로 수복정의 함량이 높아졌고, 아울러 점기장의 첨가량이 인한 동일면적 방수분함량의 감소와 관련이 있는 것으로 사료된다. 또한 음성성, 점착성, 접합성도 5% 결정장 점기장 첨가 두부에 서 높은 양상을 나타내었다. 한편 합성장과 0.5% 결정장 점기장 첨가 두부 간의 물성을 비교한 결과 건조성과 접착성은 유익적

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Yield of soybean-curd and soybean-curd wheys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>YSC</td>
</tr>
<tr>
<td>Soybean curd (g)</td>
<td>172</td>
</tr>
<tr>
<td>Soybean curd whey (ml)</td>
<td>692</td>
</tr>
</tbody>
</table>

YSC: yellow soybean curd, BSC: black soybean curd, 0.5%SC: yellow soybean curd added to 0.5% hulled black soybean, 5%SC: yellow soybean curd added to 5% hulled black soybean.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Texture properties of soybean curd on various conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (g)</td>
<td>Cohesiveness</td>
</tr>
<tr>
<td>YSC</td>
<td>101.57±0.98</td>
</tr>
<tr>
<td>BSC</td>
<td>101.86±1.07</td>
</tr>
<tr>
<td>0.5%SC</td>
<td>101.43±2.15</td>
</tr>
<tr>
<td>5%SC</td>
<td>309.14±12.33</td>
</tr>
</tbody>
</table>

SC: yellow soybean curd, SBC: black soybean curd, 0.5%SC: yellow soybean curd added to 0.5% hulled black soybean, 5%SC: yellow soybean curd added to 5% hulled black soybean.) Values with different superscripts were significantly different by DMRT (p<0.05).
인 차이가 나타나지 않았다. 이는 0.5% 경청풍 접질을 참가한 두부와 황색콩으로 가공한 두부가 기계적 물질이 유사함을 나타낸 결과이며, 이 결과로 볼 때 경청풍 접질이 기존 두부의 가공 비율 대비 0.5% 수준으로 다 많이 참가 되어도 가공된 두부의 건성과 접질성에는 영향을 미치지 않는다는 결과를 추정할 수 있다.

가공된 경청풍 접질이 큰 두부의 모성 측정 결과를 종합해 볼 때 황색콩과 접질적으로 가공한 두부에 비해 0.5% 또는 5% 경청풍 접질을 참가한 경우 익설성, 부착성, 점착성 등은 증가하는 양상을 나타내며, 반대로 탈센성의 경우는 감소양상을 나타내었다.

4. 두부의 관능평가

(Table 5)에 나타난 가공된 경청풍 접질의 관능평가 결과 조각(tenderness), 건성(firmness)에서는 황색콩, 경청풍, 0.5% 경청풍 접질 참가 및 5% 경청풍 접질 참가 두부 간에 유의적 차이가 나타나지 않았다. 이 결과는 두부 가공 시 접질 경청풍 접질을 0.5% 또는 5% 수준으로 참가 하여도 기존 두부의 맛을 감소시키지 않는다는 것을 시사하는 결과로 판단된다. 한편 탄력성(elasticity)의 경우 처리 간에 통계적 유의성이 인정되어 경청풍으로 만든 두부에서 탄력성이 가장 낮은 양상을 나타내었다. 두부의 전체적인 종종의 0.5% 경청풍 접질 참가 한 두부의 탄력성, 읍을 풍미, 전체적인 풍미에 있어서 두부의 두부와 비교시 유의적 차이가 나타나지 않는 것으로 보아 접질 경청풍 접질 참가한 두부에 비해 탄력성이 낮게 나타난 것으로 나타났다. 이는 경청풍 접질 참가 시 키가능성 두부 제조의 가능성을 시사한다.

5. 저장기간에 따른 마신별 검사

가공된 경청풍 접질 두부의 일반세균수 변화를 측정한 결과는 (Table 6)과 같다. 현재 우리나라에서는 아직 정립되어 있지 않으나, 일반적으로 식품위생 평가 시 얇처리 식품의 경우 위생상 안전성이 확보될 수 있는 일반 세균수는 1×10^3CFU/g 정도로 판정하고 있으며, 두부의 중균수가 10^4CFU/g정도 이상이 되면 배양시 시작되는 것으로 평가되며, 이를 기준으로 할 경우 황색콩과 경청풍, 또는 0.5% 경청풍 경질 참가 두부는 가시기간이 5일 정도이며, 5% 경청풍 접질 참가 두부는 황색콩과 경청풍, 또는 0.5% 경청풍 접질 참가 두부에 비해 5일 정도 연장되는 양상을 보였다.

Table 5. Sensory evaluation scores of various soybean curd

<table>
<thead>
<tr>
<th></th>
<th>YSC</th>
<th>BSC</th>
<th>0.5% SC</th>
<th>5% SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>2.92±1.24</td>
<td>2.09±1.49</td>
<td>2.50±1.16</td>
<td>2.42±1.41</td>
</tr>
<tr>
<td>Elasticity</td>
<td>2.00±0.74</td>
<td>1.50±0.52</td>
<td>2.42±1.00</td>
<td>2.08±1.00</td>
</tr>
<tr>
<td>Firmness</td>
<td>2.42±1.00</td>
<td>1.75±0.97</td>
<td>2.50±1.00</td>
<td>2.50±1.24</td>
</tr>
<tr>
<td>Good flavor</td>
<td>3.17±1.03</td>
<td>3.25±1.06</td>
<td>3.83±0.83</td>
<td>2.17±1.11</td>
</tr>
<tr>
<td>Overall taste</td>
<td>2.50±0.67</td>
<td>2.50±1.00</td>
<td>3.33±0.78</td>
<td>1.83±1.40</td>
</tr>
<tr>
<td>YSC: yellow soybean curd, BSC: black soybean curd, 0.5%SC: yellow soybean curd added to 0.5% hulled black soybean, 5%SC: yellow soybean curd added to 5% hulled black soybean.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Values with different superscripts were significantly different by DMRT (p<0.05).

Table 6. Changes of microbial cell count in PCA for storage periods of various soybean curd

<table>
<thead>
<tr>
<th></th>
<th>YSC</th>
<th>BSC</th>
<th>0.5% SC</th>
<th>5% SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.19 x 10^2</td>
<td>6.23 x 10^2</td>
<td>3.54 x 10^3</td>
<td>1.29 x 10^3</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| YSC: yellow soybean curd, BSC: black soybean curd, 0.5% SC: yellow soybean curd added to 0.5% hulled black soybean, 5% SC: yellow soybean curd added to 5% hulled black soybean.

Table 7. Changes of microbial cell count in PDA for storage periods of various soybean curd

<table>
<thead>
<tr>
<th></th>
<th>YSC</th>
<th>BSC</th>
<th>0.5% SC</th>
<th>5% SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.24 x 10^2</td>
<td>5.21 x 10^3</td>
<td>7.21 x 10^3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| YSC: yellow soybean curd, BSC: black soybean curd, 0.5% SC: yellow soybean curd added to 0.5% hulled black soybean, 5% SC: yellow soybean curd added to 5% hulled black soybean.

IV. 요 약

경청풍 접질을 참가하여 제조한 두부의 품질특성을 검토하
였다. 황색층과 검정층 전체를 분쇄하여 가공한 두부의 수磁층
과 두부분량의 수독량은 거의 동일한 양을 나타내었으나,
0.5% 및 5%의 검정층 첨가로 두부를 제조한 경우 첨
가된 첨가로 인해 황색 및 검정 두부에 비해 두부의 수독량이
두껍게 증가하였다. 특히, 5% 검정층 첨가시 황색과
검정 두부에 비해 1/2수준의 두부분량이 감소하였다. 두부의 물
성검사에서는 검정층 졸파도의 두부분량을 감소시켰다. 두부의 물
성검사에서는 검정층 졸파도의 두부분량을 감소시키는 미적
성, 음성성이 높은 양을 나타내었으며, 황색층과 0.5% 검정
층 첨가 두부 간의 물성에 비교한 결과는 점착성과 편함성
에서 유의적인 차이가 나타나지 않았다. 이는 기존 두부의 가공
비율 테이 0.5% 수준으로 검정층 졸파도를 첨가하여도 가공된 두
부의 건고성과 편함성에는 영향을 미치지 않는다는 결과를 추
정할 수 있다. 또한 관능평가에서는 조각감(TEXTURE), 건고성
(FIRMNESS)에서는 황색층, 검정층, 0.5% 검정층 첨가 및
5% 검정층 첨가 두부 간에 유의적인 차이가 나타나지 않
았다. 두부 특유의 고소한 맛은 0.5% 검정층 첨가를 첨가한 두
부에서 가장 좋은 품질을 나타내었다. 5% 검정층 첨가 두부
에서 가장 높았다. 두부 저장기간에 따른 일반 세균수와 진
균수를 측정한 결과는 5% 검정층 첨가 두부에서 황색층,
검정층, 0.5% 검정층 첨가 두부에 비해 균의 증가가 억제
되는 양상을 보였다.

참고문헌
1) Jung, J. Y., Cho E. J. The effect of Green tea powder
levels on Storage Characteristics of Tofu. Korean J. Soc.
Food Cookery Sci. 18(2): 129-135, 2002
2) Park, Y. J., Nam, Y. L., Jeon, B. R., Oh, N. S. and In, M. J.
Effects of garlic addition on quality and storage
characteristics of soybean curd (Tofu). J. Korean soc.
3) Kim, K. T., Im, J. S. and Kim S. S. A study of the physical
and sensory characteristics of ginseng soybean curd
prepared with various coagulants. Korean J. Food Sci.
Technol. 28: 965-969, 1996
4) Kim S. S., Park, M. K., Oh N. S., Kim, D. C., Han M. S.,
In, M. J. Studies of Quality Characteristics and Shelf-life
as a coagulant on shelf-life of tobu prepared in
6) Hwang, T. I., Kim S.K., Park, Y. S. and Byoun, K. E.
Studies on the storage of functional red soybean curd. J.
7) Kim, J. S., Nam, Y. J. and Kwoun, T. W. Induction of
quinone reductase by soybean isoflavone, genistein.
Food and Biotechnology, 5: 70-76, 1996
8) Kenney, A. Cancer prevention by soy products J. Nutr.,
125: 733-739, 1995
9) Wu, G. T., Chiang, H. C., Fu, W. C., Ccin K.Y., Chang, Y.
and Horng, L. Y. Formosanin an immunomodulator
with antitumor activity. Int. J. Immunopharmac., 12: 777-
782, 1990
10) 許俊, 東醫實錄. 1610
Extraction and separation of antocyanins in black
soybean. RDAJ Crop Sci. 39: 35-38, 1997
12) Bae, E. A., Moon G. S. A study of the antioxidative
Nutr. 26: 203-208, 1997
13) Sa, J. H., Shin, I.C., Jeong, K.J., Shim, T.H., Oh, H.S., Kim,
Y. J., Cheung, E. H., Kim, G. G. and Choi, D. S.
Antioxidative activity and Chemical Characteristics from
different Organs of small black soybean (Yak-Kong)
14) AOAC. Official Methods of Analysis. 16th ed. Association
of Official Analytical Chemists, Washington, D.C., USA.
1995
15) 식품기준, 한국식품공업협회, 서울, p617, 1997
16) Kim, S. H., Kwon T. W., Lee Y. S., Chounig, M. G., and
Moon, G.S. A Major Antioxidative Compound
and Comparison of Antioxidative activities in black soybean.