위성영상의 종류에 따른 분리도 특성의 상관관계 분석
Analysis of Relation of Class Separability According to Different Kind of Satellite Images

홍순현
부산대학교 산업토목학과

Soon-Heon Hong(hsh1963@pnu.ac.kr)

요약

위성영상의 분류는 원격탐사의 가장 기본적인 분야다. 위성영상분리도 위성영상의 분류에 있어 영상
정확도 가장에 매우 효율적이며 할 수 있다. 영상분류를 항상 시키기 위해서 분리도의 특성을 파악하여
분류의 정확도와의 상관관계를 분석하였다. 영상은 영상마다의 분리도를 비교, 분석하기 위해 IKONOS 영
상, SPOT 5 영상, Landsat TM 영상을 1m의 해상도로 리셀링하였다. 본 연구에서 위성영상별로 클래스
분리도를 측정한 결과 분리도 값이 대체로 1,600~2,000으로 높게 나타났다.

■ 중심어 : [위성영상분리도] [위성영상특성] [원격탐사]

Abstract

The classification of the satellite images is basic part in Remote sensing. In classification of the
satellite images, class separability feature is very effective accuracy of the images classified. For
improving classification accuracy, It is necessary to study classification method than analysis of class
separability feature deciding classification probability. In this study, IKONOS, SPOT 5, Landsat TM,
were resampled to sizes 1m grid. Above images were calculated the class separability prior to the step
for classification of pixels. This Study concludes, each image was measured by the rate of class
separability, values classified were showed highly about 1,600~2,000.

■ Keywords : [Classification of The Satellite Images] [Class Separability] [Remote Sensing]

1. 서 론

과학 기술의 발달에 따라 원격탐사는 인류가 이룩한 전체 발달사와 견줄 수 있을 정도로급격한 발전을 이
루었다. 특히 컴퓨터와 통신 기기의 급속한 보급은 정보 통신의 혁명을 이룬다. 우리 생활의 거의 모든 영
역에서 사용되고 있을 뿐만 아니라 새로운 분야로의 개발은 측량기술의 전진화를 이끌었다. 원격탐사는 과
거의 수작업에 의존하던 측량방식에서 벗어나 위성영
상의 활용에 의존하기 불가능한 지역의 자료를 쉽게 얻
을 수 있다는 장점 때문에 필요성이 더욱 커지고 있다.
원격탐사가 지형자료의 가시화(scientific data
visualization)에 대표적인 분야로 꼽히는 이유는 입체적
인 지형분석의 가능하기 때문이다. 그리고 저렴한 비용
으로 넓은 지역을 단시간에 분석, 다양한 정보를 얻을
을 수 있어 농업정보, 환경, 해양, 기상 등 활용범위

접수번호 : #061212-003
접수일자 : 2006년 12월 12일
심사완료일 : 2006년 12월 27일
교신처장 : 홍순현, e-mail : hsh1963@pnu.ac.kr
가 다양하게 뿌린 가치관을 우선으로 하는 시대에 더욱 각광을 받고 있다. 물질에 따라 다르게 반사되는 에너지 파장을 관측, 파장별 별로 분석해 토양의 오염이나 침수 위험을 보여주는 영상지도를 제작할 수 있다. 그리고 주택, 도로, 도시 등의 개발지를 선정하거나, 도시 이용에 관한 구역을 설정하기 위한 도시계획 시 기초 자료로 활용되고 있다. 또한 위상영상은 기반으로 토지 이용도나 수질도를 작성, 적도 현상 및 보영형상을 모니터링 할 수 있고, 농용 등도 파악할 수 있다.

전력품사의 가장 기본적인 활용분야인 위상영상분류는 Landsat 영상에서부터 IRS-C1 영상까지 중·고분류 영상의 선정은 이미 이루어져 있다. 최근에는 우리나라에서도 6미터 해상도인 Kompsat 영상이 보급되면서 해상도의 관심이 높아지고 있으며, 2006년에 발사된 1미터 해상도의 Kompsat-2 영상이 보급되면 해상도의 분리특성 분석에 대한 연구가 필수라고 할 수 있다. 현재 해상도의 위상영상은 가장 많이 활용되는 위상은 IKONOS이다.

영상화소 분류정확도를 향상시키는 방법은 영상자료의 해상도를 감소시키거나, 분리하우의 단순화, 참조자료의 다양화 등 3가지로 나눌 수 있다. 기존의 중·저 해상도 영상은 토지이용도 등 영상 활용 시 큰 어려움 없이 사용되었으나, 그러나 기존의 영상분류방법으로는 해상도 위상영상과 스펙트럼 위상영상의 출현으로 분류정확도를 높이는데 한계점을 보이고 있으며, IKONOS의 분리도 특성의 개념자료가 파악되지 못한 상태로 분리기법에 의존했기 때문에 높은 분류 정확도를 기대하기는 사실상 불가능 하였다. 최근에는 각계 지형영상분석기술로 인한 스펙트럼 영상을 활용하여 많은 정보를 포함하는 영상을 동일성을 지닌 각계로 구성된 영상을 분석함으로써 분류정확도를 향상시켰으나 분리특성에 대한 기본적인 분석이 없이 분리항목의 단순화로 기존의 분리기법과 큰 차이를 보이지 않았다. 그리고 위상영상 분리작업에는 분류 클래스에 대한 샘플화소의 대표성은 분류 정확도에 많은 영향을 미치기 때문에 분류 정확도를 향상시키기 위해서는 분류이전단계의 취적파가 필요하다.

따라서 본 연구에서는 고해상도 위성 중 활용변도가 가장 높은 IKONOS 영상에 대한 영상특성을 파악한 후 기존의 중·저 해상도위성영상의 분리도 특성에 대하여 비교 분석하여 고해상도영상의 분류 정확도에 미치는 영향에 대하여 분석하는데 그 목적이 있다.

II. 기본 이론 및 연구 방법

1. 분리도 측정 기법

다각형의 스케트립 정보를 이용하여 토지처리되는 토지이용에 대한 분류를 실시할 때, 적절한 분광변도를 선정함으로써 그 정확도를 높일 수 있다. 분류에 이용되는 분광변도의 수에 따라, 중복되는 스케트립 특성을 판별함으로써 혼합분류를 해체함으로써 분류 정확도는 향상되지만 오히려 작업시간이 증가 될 수 있다. 그러므로 여러 개의 분광변도의 데이터를 이용하여 분류를 실시하는 경우 각각의 분류 항목 등을 가장 효율적이고 정확하고 그러므로, 정량적으로 판별해 볼 수 있는 분광 넣으면 조합을 결정하여야 하며, 이것은 추후 변명도가 현재보다 많은 경우 더욱 중요한 일이 된다[1][2].

특정 클래스간의 분류정확도를 높이기 위해서는 오차 확률을 최소화해야 하는데, 이 확률값은 직접적으로 구해질 수 없으므로 이 확률의 특성을 잘 반영할 수 있는 분리도(separability)를 대신하고 있다. 즉 클레스 간의 중복명이 줄어들면 그만큼 특성화소를 올 수 클래스를 분류할 확률이 증가한다. 두 클래스간의 표준편차와 평균이 각기 일정한 상태라고 가정하면 평균간의 거리가 떨어질 때 두 클래스 확률함수간의 중복 면적은 감소하게 된다.

또한 평균간의 거리가 떨어진 상태에서 표준편차가 증가하면 중복 면적도 증가하게 된다. 이러한 함수의 특성을 고려한 오차 확률의 변화를 식(1)과 같이 평균간의 정규화 거리(normalized distance between the means)로 나타내고 있다.

\[
d_{\text{norm}} = \frac{|\mu_1 - \mu_2|}{\sigma_1 + \sigma_2}
\]
일반적으로 분리도 적도가 적절해야 할 수학적 요건으로는 첫째, 서로 다른 확률함수들의 분리도는 항상 양의 값을 가져야 한다. 둘째, 차체 확률함수에 대해서는 0이어야 한다. 셋째, 대칭적이어야 한다. 넷째, 측정 벡터성분이 통계적으로 독립일 때,

\[d_i(X_i, X_2, X_3, X_4, \ldots, X_n) = \sum_{i=1}^{n} D_i(X_i) \] 이어야 한다.

본 논문에서는 상기의 수학적 조건을 만족시키고 널리 적용되는 divergence, mahalanobis 거리, jeffrey-matusita거리에 대하여 간략히 서술한다.

분리도 적도로서의 Divergence는 원격탐사에 의해 얻어진 데이터에 대한 machine process에서 통계적 분리도 측정 시 가장 많이 쓰이는 방법이고, 또한 feature selection에 많이 쓰는 방법이다.

Divergence는 감독분류(supervised classification)의 트레 이닝에서 얻어진 클래스별 평균과 공분산으로부터 식 (2)가 얻어진다.

\[L_j(X) = \frac{P(X \mid w_j)}{P(X \mid w)} \] (2)

우도비(likelihood ratio)가 커질수록 class i로 분류될 가능성이 높다는 것은 \(P(x \mid w_i) \sim N(U_i, \Sigma_i) \)로 나타낼 수 있다. 여기서 로그 우도비를 고려하여 식(3)으로 적도를 고려한다. 여기서, \(p(X \mid w_i) \)는 항목 2 Clas.

\[L_{i,j}(X) = \ln L_{i,j} - \ln L_{i} = \ln p(X \mid w_j) - \ln p(X \mid w_j) \] (3)

위 식으로부터 클래스 \(i, j \) 간의 divergence(D_{i,j})는

\[D_{i,j} = \ln p(X \mid w_i) - \ln p(X \mid w_j) + \ln p(X \mid w_i) - \ln p(X \mid w_j) \] (4)

으로 나타내고 있다.

이제 \(D_{i,j} \) 적도 부피적분의 형태로 되어 있으므로 차 확률과 마찬가지로 그 값을 직접 얻을 수 없다. 그러므로 각 클래스들이 정규 확률분포라는 가정 하에,

\[P(X \mid w_i) = N(U_i, \Sigma_i), P(X \mid w_j) = N(U_j, \Sigma_j) \] (5)

을 대입하면 식 (6)과 같이 정리되고, 이에 대한 유도는 생략한다[3].

\[D_{i,j} = \frac{1}{2} tr[(\Sigma_j - \Sigma_i)(\Sigma_j^{-1} - \Sigma_i^{-1})] + \frac{1}{2} tr[(\Sigma_i^{-1} - \Sigma_i^{-1})(M_j - M_i)(M_j - M_i)^T] \] (6)

위 식은 두개의 향으로 이루어져 있는데, 첫 번째 항은 공분산의 차이로 생기는 영향을 반영하며, 두 번째 항은 평균간의 정규화 거리를 다변량 폭형으로 일반화시켜 놓았다. 따라서 평균과 공분산이 모두 같지 않은 경우\(d_{norm} \)의 문제는 해결된다. 또한 두 개 클래스간의 계산이 아닌 다중 클래스에 있어서 모든 조합이 가능한 클래스의 divergence 평균값은 식(7)과 같이 된다.

\[d_{av} = \sum_{i=1}^{M} \sum_{j=1}^{M} P(w_i)P(w_j) d_{i,j} \] (7)

그러나 이 값의 가장 큰 것을 유효한조합에 이용하는 것은 타당하지만 아래 그림과 같이 정규화 거리에 대한 divergence와 오차확률의 변화형태가 달라 문제를 발생한다.

beattacharyya 거리는 divergence와 마찬가지로 부피적분이 행해진다.

\[B_{i,j} = -\frac{1}{2} \ln \left(\frac{N(U_i, \Sigma_i) \cdot N(U_j, \Sigma_j)}{N(U_i + U_j, \Sigma_i + \Sigma_j)} \right) \] (8)

로 나타난다. 여기에 정규분포를 가정한다면,

\[B_{i,j} = \frac{1}{8} (U_i - U_j)^T (\Sigma_i + \Sigma_j)^{-1} (U_i - U_j) + \frac{1}{2} \ln \left(\frac{1}{4} \left(\frac{1}{\det \Sigma_i} + \frac{1}{\det \Sigma_j} \right)^{\frac{1}{2}} \right) \] (9)

로 정리된다.

이제 두 클래스간의 공분산 행렬을 같다고 놓으면 두 평균값의 mahalanobis 거리가 되고, 이것은 divergence에서도 마찬가지이다.

2. 연구 방법

본 연구는 영상분류기법에 있어서 데이터의 정규성 정도가 영상 분류의 평판적 기준으로 도입될 수 있는가에 대한 가능성을 분석하고, 영상분류 이전의 분리도의 특성을 파악하여 분리의 정확도와의 관계관계를 분석함으로써 위성영상분류 정확도를 향상시키고자 하는데
그 목적이다.

IKONOS 영상의 공간해상도가 1m 급으로 높아짐에 따라 전체 영상에 다양한 분석 방법을 적용하는 것은 비효율적이므로, 소규모 지역을 선정 하였다. 각 위치 정량화 하자 분리된 분리지 표준치 더하므로, 위치정량화의 분리지를 먼저 파악하고, 그에 적합한 분류조합을 설정하여 분류를 실시하였다.

먼저 연구 대상지역을 선정한 후 그 지역에 대한 공간자료의 획득을 위해 국토지리정보원에서 제공된 측 측 1:1,000, 1:25,000, 수도지도와 1:1,000 토양도를 사용하였으며, 현장조사성을 병행하였다. 영상은 영상마다의 분리도를 비교, 분석하기 위해 IKONOS 영상, Spot5 영상, Landsat 영상을 이용하였다. 선정된 지역에 대하여, PCI V62, ERDAS 8.6, Autodesk Map 2000, Image Analyst 8.5, ArcView GIS 3.3, MATLAB 6.2 프로그램을 사용하였다.

연구 대상지역은 부산광역시 금정구 장전동 일대를 선정하였다. 도심과 산림, 도로, 물 저해가 고수 분포되어 범드별 분량특성을 파악하기가 용이하고 영상별로 분량특성을 비교, 분석하는데 효율적이다. 본 연구의 연구방법을 요약도로 나타내면 [그림 1]과 같다.

III. 실험 및 고찰

1. 연구대상지역 선정

본 연구에서는 연구대상지역으로 부산광역시 장전동 일대를 선정하였다. 영상분석에 해당하는 도시 지역과, 수역 등이 고수 분포되어 있어 실험 항목을 선정하는데 적절하다. 위치정량화의 전처리 과정인 기하보정으로 지상기준점을 선정하기위해 적당한 널리의 IKONOS 영상, Spot5 영상, Landsat TM 영상을 사용하였고, 수치지도 TM 좌표를 UTM 좌표체계로 변환하였다.

(a) IKONOS

(b) Digital Map(1:1,000)

그림 2. IKONOS Imagery and Digital map of Study Area

그림 3. Ground Control Point

그림 1. How to Study
분리도 특성분석을 위해 사용된 IKONOS영상([그림 2])는 2003년 4월 22일 촬영한 것으로 흑백 1m, 텃밭 4m(다중분광Band) 영상자료를 공급하는데, 이 연구에서 사용한 자료는 동시에 촬영된 두 영상을 융합하여 생성한 텃밭 1m 급 해상도 영상이다. SPOT 영상은 2004년 1월 21일 촬영한 영상이고, Landsat영상은 2000년 4월 23일 촬영한 영상이다. 자료기준점 선탄점은 [그림 3]과 같이 1:10,000척도의 수치지도를 활용하였다.

2. 분류함경 선정

3. 영상별 통계특성분석

3.1 단변량 통계분석

다중분광자료의 기본 자료인 단변량(Univariate)과 다변량(Multi-variate) 통계를 계산하는 것은 화상의 각 밴드에 대한 최대, 최소, 평균, 표준편차, 분산-공분산 매트릭스, 상관 매트릭스, 그리고 히스토그램을 그린는데 이용되는 각 임의의 정보를 얻기(BV : brightness values)의 빈도 등을 포함하는데, 이들 각 통계치는 원격감시 자료를 디스플레이하고 분석하는데 필수적인 정보를 제공한다. 단변량 통계치인 평균, 표준편차, 분산 등은 편중 측정을 위한 정보를 제공하며, 다변량 통계치인 공분산과 분산은 자료의 중복성이나 화소의 품질을 파악하는데 유용하게 사용된다[5].

[표 1]은 IKONOS에 대한 단변량 통계치인데, Band 3에서 분산(470.4.23), 및 표준편차(68.586) 값이 가장 낮게 나타났으며 최하의 발기값(252), 발기값의 최소범위(252-1291)를 나타낸다. 밴드 1에서 분산(11940.91) 및 표준편차(109.274)가 가장 크게 나타났다. 밴드 2는 가장 낮은 발기값(225-1648)을 가진다.

<table>
<thead>
<tr>
<th>Ikonos</th>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균</td>
<td>320.116</td>
<td>434.768</td>
<td>402.225</td>
</tr>
<tr>
<td>중앙값</td>
<td>271.867</td>
<td>392.868</td>
<td>373.18</td>
</tr>
<tr>
<td>분산</td>
<td>11940.91</td>
<td>9860.156</td>
<td>4704.023</td>
</tr>
<tr>
<td>표준편차</td>
<td>109.274</td>
<td>99.298</td>
<td>68.586</td>
</tr>
<tr>
<td>최소값</td>
<td>100</td>
<td>225</td>
<td>252</td>
</tr>
<tr>
<td>최대값</td>
<td>1513</td>
<td>1648</td>
<td>1291</td>
</tr>
<tr>
<td>범위</td>
<td>1413</td>
<td>1423</td>
<td>1039</td>
</tr>
</tbody>
</table>

[표 2]는 Spot 영상에 대한 단변량 통계치를 나타낸 것인데 밴드 3에서 최소분산(621.838)을 가지며 표준편차(24.937)도 가장 작은 것으로 나타났다. 밴드 1은 최하의 발기값(17), 발기값의 최소범위(17-210), 그리고 가장 낮은 평균(68.733)을 나타낸다. 반대로 밴드 2는 최대분산(1189.825)과 가장 낮은 발기값(42-255)을 가진다.

<table>
<thead>
<tr>
<th>Spots</th>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균</td>
<td>68.733</td>
<td>83.837</td>
<td>89.511</td>
</tr>
<tr>
<td>중앙값</td>
<td>68</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td>분산</td>
<td>792.264</td>
<td>1189.825</td>
<td>621.838</td>
</tr>
<tr>
<td>표준편차</td>
<td>28.147</td>
<td>34.494</td>
<td>24.937</td>
</tr>
<tr>
<td>최소값</td>
<td>17</td>
<td>42</td>
<td>59</td>
</tr>
<tr>
<td>최대값</td>
<td>210</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>범위</td>
<td>193</td>
<td>213</td>
<td>196</td>
</tr>
</tbody>
</table>

[표 3]에서는 Landsat 영상의 단변량 통계치를 분석 한 결과 Band 2는 발기값의 최소범위(19-133), 그리고 가장 낮은 분산(60.596)을 나타내온다. 밴드 5는 가장 높은 분산(579.664)을 가졌으며, 가장 낮은 발기값
(20-212)을 가진다. 각각 영상별로 단변량 통계치를 분석하면 밴드별로 통계치가 비슷한 분포를 가진다는 것을 알 수 있었다.

표 3. Univariate Analysis about Landsat Imagery

<table>
<thead>
<tr>
<th>Landsat</th>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
<th>Band 4</th>
<th>Band 5</th>
<th>Band 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균</td>
<td>85.261</td>
<td>52.083</td>
<td>40.191</td>
<td>62.259</td>
<td>75.972</td>
<td>35.467</td>
</tr>
<tr>
<td>중앙값</td>
<td>79</td>
<td>34</td>
<td>36</td>
<td>62</td>
<td>74</td>
<td>31</td>
</tr>
<tr>
<td>분산</td>
<td>202.562</td>
<td>60.595</td>
<td>192.031</td>
<td>170.165</td>
<td>759.654</td>
<td>276.679</td>
</tr>
<tr>
<td>최소값</td>
<td>67</td>
<td>19</td>
<td>18</td>
<td>10</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>최대값</td>
<td>207</td>
<td>133</td>
<td>186</td>
<td>164</td>
<td>212</td>
<td>145</td>
</tr>
<tr>
<td>범위</td>
<td>140</td>
<td>114</td>
<td>168</td>
<td>154</td>
<td>192</td>
<td>141</td>
</tr>
</tbody>
</table>

각 화소에 대한 분포 측정값에서 유도된 각각의 다른 밴드의 원격탐사자료는 비슷하게 변화하는 있으나 분광측정치가 개별적이므로 상호관계에 대한 분석이 필요하다. [그림 4]는 [표 1][표 2][표 3]의 결과에서 각 영상에 대한 분산의 변화를 검토하였는데 각 영상밴드별로 과장대는 비슷한 분포을 보이면서 분산치가 변화됨을 알 수 있었다.

3.2 영상별 상관행렬 분석

측정 단위에 영향을 받지 않는 방법으로 변수간의 상호관계를 측정하기 위해 상관관계가 이용된다. 상관관계는 +1에서 -1까지이다. +1의 상관계수는 두개의 밴드에서 밝기값 사이의 완벽한 정(+)의 관계를 나타낸다.

표 4. IKONOS Correlation Matrix

<table>
<thead>
<tr>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>1.000000</td>
<td></td>
</tr>
<tr>
<td>Band 2</td>
<td>0.9733952</td>
<td>1.000000</td>
</tr>
<tr>
<td>Band 3</td>
<td>0.9664829</td>
<td>0.9657471</td>
</tr>
</tbody>
</table>

표 5. Spot Correlation Matrix

<table>
<thead>
<tr>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>1.000000</td>
<td></td>
</tr>
<tr>
<td>Band 2</td>
<td>0.1481630</td>
<td>1.000000</td>
</tr>
<tr>
<td>Band 3</td>
<td>0.1703778</td>
<td>0.2112252</td>
</tr>
</tbody>
</table>

표 6. Landsat Correlation Matrix

<table>
<thead>
<tr>
<th>Band 1</th>
<th>Band 2</th>
<th>Band 3</th>
<th>Band 4</th>
<th>Band 5</th>
<th>Band 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 2</td>
<td>0.4537005</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 3</td>
<td>0.4620476</td>
<td>0.9629109</td>
<td>1.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Band 4</td>
<td>0.5451204</td>
<td>0.4227046</td>
<td>0.9678320</td>
<td>1.000000</td>
<td></td>
</tr>
<tr>
<td>Band 5</td>
<td>0.4236494</td>
<td>0.4257847</td>
<td>0.4622002</td>
<td>0.4871035</td>
<td>1.000000</td>
</tr>
<tr>
<td>Band 7</td>
<td>0.3670323</td>
<td>0.3013000</td>
<td>0.3610514</td>
<td>0.3251495</td>
<td>0.4653075</td>
</tr>
</tbody>
</table>

특정 밴드에서의 화소 값이 증가하면, 또 다른 밴드의 값 역시 증가한다. 반대로 -1의 상관계수는 한 밴드가 다른 밴드와 부(―)의 관계를 나타낸다. 한 밴드에서 값이 값이 증가하면 다른 밴드의 그와 상응하는 화소는 대칭적으로 감소한다.

상관계수 -1과 +1사이에는 다소 불완전한 관계가 존재한다. 상관계수 0은 원격탐사 데이터의 두 밴드간에 선형적인 관계가 없음을 나타낸다. 밴드 간의 상관관계는 대개 표본자료의 밴드간 상관을 상관행렬로 나타난다. 대개 대각선 아래의 계수만이 표현되는데, 이것은 대각선 부분은 1이며, 대각선 외부부는 중요되기 때문에 제외하였다.

그림 4. Dispersion Transition about Wavelength of Satellite Imageries

각 화소에 대한 분포 측정값에서 유도된 각각의 다른 밴드의 원격탐사자료는 비슷하게 변화하는 있으나 분광측정치가 개별적이므로 상호관계에 대한 분석이 필요하다. [그림 4]는 [표 1][표 2][표 3]의 결과에서 각 영상에 대한 분산의 변화를 검토하였는데 각 영상밴드별로 과장대는 비슷한 분포을 보이면서 분산치가 변화됨을 알 수 있었다.
다음 [표 4][표 5][표 6]는 영상별 범주의 상관행렬을 나타낸다. [표 4] IKONOS는 높은 상관(0.996 < r < 0.973)을 나타내었고, [표 5]의 Spot은 낮은 상관(0.148 < r < 0.211)을 나타냈다. [표 6]은 Landsat은 가시범드의 상관(0.454 < r < 0.563)을 나타내었고, 근적외선 범드의 상관(0.736 < r < 0.827)은 나타내었다.

3.3 영상별 분산-공분산 행렬
분산-공분산 행렬을 나타내는데 행렬의 모든 요소는 하나의 수치를 가진다. 다음 [표 7][표 8][표 9]은 각 영상의 공분산 행렬을 나타낸다.

<table>
<thead>
<tr>
<th>표 7. IKONOS Variance–Covariance Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 2</td>
</tr>
<tr>
<td>Band 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 8. Spot Variance–Covariance Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 2</td>
</tr>
<tr>
<td>Band 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 9. Landsat Variance–Covariance Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 1</td>
</tr>
<tr>
<td>Band 2</td>
</tr>
<tr>
<td>Band 3</td>
</tr>
<tr>
<td>Band 4</td>
</tr>
<tr>
<td>Band 5</td>
</tr>
<tr>
<td>Band 7</td>
</tr>
</tbody>
</table>

3.4 분리도 특성분석
클래스간의 분류 정확도를 높여주기 위해서는 오차 확률을 최소화 하는데 있다. 이 확률 값을 적절적으로 구해낼 수 없으므로 이 확률의 특성을 잘 반영할 수 있는 분리도(separability)로 대신하고 있다.

클래스간의 중복 면적이 줄어들면서 그 만큼 특정화소를 올은 클래스로 분류할 확률이 증가한다. 두 클래스 간의 표준편차, 평균이 같은 경우 해당 간의 거리가 멀어질 때 두 클래스간의 중복 면적은 줄어들게 된다.

CLASSES간의 분리도가 높을수록 분류자에게 판별력이 좋은 사전정보를 입력시키는 것이며, 분류 정확도를 예측할 수 있게 된다.

3.4.1 IKONOS 분리도 특성
발산도(divergence)는 원점으로의 거리의 내적 연산에 사용된 통계적 분리도의 첫 번째 측정치 중 하나로 Feature Selection 방법으로 가장 널리 사용된다. [표 10]은 IKONOS영상에서의 실험결과 분리도 측정값을 나타낸 것으로 최소값은 0.251(class 7-9)이고, 최대값은 2.000(class 1-4)이다. 대체로 분리도가 높게 나타났으며, class 2-6, class 5-6이 다른 클래스보다 낮게 나타났고, class 7과 class9의 분리도는 아주 낮게 나타났다. 평균 분리도는 1.572이다.

발산도의 분리도는 대체로 높게 나타났고, 최소값은 0.258(class 7-9), 최대값은 2.000으로 나타났다. 특히 클래스 3-7, 3-8, 7-9는 좋지 않았음을 나타냈다.

3.4.2 Spot 분리도 특성
Spot의 경우에 대한 분리도는 [표 10]과 같이 클래스 1과 나머지 클래스와, 클래스 2와 나머지 클래스의 분리도는 아주 높게 나타났다.

<table>
<thead>
<tr>
<th>표 10. IKONOS Class Separability</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Bhattacharyya Distance</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

표 11. Spot Class Separability

a) Bhattacharyya Distance

<table>
<thead>
<tr>
<th>2</th>
<th>1.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.999</td>
</tr>
<tr>
<td>4</td>
<td>1.999</td>
</tr>
<tr>
<td>5</td>
<td>1.999</td>
</tr>
<tr>
<td>6</td>
<td>1.999</td>
</tr>
<tr>
<td>7</td>
<td>1.999</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
</tr>
<tr>
<td>9</td>
<td>1.996</td>
</tr>
</tbody>
</table>

b) Transform Divergence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 13. 0.45–0.52μm

a) Bhattacharyya Distance

<table>
<thead>
<tr>
<th>2</th>
<th>1.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.999</td>
</tr>
<tr>
<td>4</td>
<td>1.999</td>
</tr>
<tr>
<td>5</td>
<td>1.999</td>
</tr>
<tr>
<td>6</td>
<td>1.999</td>
</tr>
<tr>
<td>7</td>
<td>1.999</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
</tr>
<tr>
<td>9</td>
<td>1.996</td>
</tr>
</tbody>
</table>

b) Transform Divergence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 12. Landsat Class Separability

a) Bhattacharyya Distance

<table>
<thead>
<tr>
<th>2</th>
<th>1.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.000</td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
</tr>
<tr>
<td>6</td>
<td>2.000</td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
</tr>
</tbody>
</table>

b) Transform Divergence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 14. 0.52–0.60μm

a) Bhattacharyya Distance

<table>
<thead>
<tr>
<th>2</th>
<th>1.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.999</td>
</tr>
<tr>
<td>4</td>
<td>1.999</td>
</tr>
<tr>
<td>5</td>
<td>1.999</td>
</tr>
<tr>
<td>6</td>
<td>1.999</td>
</tr>
<tr>
<td>7</td>
<td>1.999</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
</tr>
<tr>
<td>9</td>
<td>1.996</td>
</tr>
</tbody>
</table>

b) Transform Divergence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4.3 Landsat 분리도 특성
Landsat의 거리에 대한 분리도는 [표 12]의 a와 같이 평균 1.93으로 아주 좋게 나타났다. 최소값은 0.868(3-9), 최대값은 2.00으로 나타났다. 발산도는 [표 12]의 b와 같이 평균 1.96으로 더 높게 나타났다. 최소값은 1.011(3-9), 최대값은 2.00으로 나타났다.

3.4.4 파장대별 분리도
위성영상의 파장대 별로 다음과 같이 거리에 대한 분리도와 발산도를 나타냈다. [표 13]은 0.45-0.52μm에서의 거리 분리도를 나타내며 평균 1.637로 높은 분리도를 나타냈다. 최소값은 0.497(3-8), 최대값은 2.00

표 15. 0.63-0.69μm

<table>
<thead>
<tr>
<th>a) Bhattacharrya Distance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.434</td>
<td>3</td>
<td>1.996</td>
<td>5</td>
<td>1.988</td>
<td>6</td>
<td>1.965</td>
<td>7</td>
<td>2.000</td>
</tr>
</tbody>
</table>

b) Transform Divergence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.000</td>
<td>1.966</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

으로 나타났다. 발산도는 평균 1.750으로 좋게 나타났으며, 최소값은 0.618(5-6), 최대값은 2.00으로 나타났다.

[표 14]의 0.52-0.60μm 파장대의 거리에 대한 분리도는 평균 1.564로 보통으로 나타났다. 최소값은 0.563(3-6), 최대값은 2.00으로 나타났다. 발산도는 1.728로 조금 높게 나타났고, 최소값은 0.653(3-6), 최대값은 2.00으로 나타났다.

[표 15]의 0.63-0.69μm 파장대의 거리에 대한 분리도는 평균 1.556로 보통으로 나타났고, 최소값은 0.647(3-7), 최대값은 2.00으로 나타났다. 발산도는 최소값이 0.720(3-7), 최대값은 2.00으로 나타났다. 평균은 1.736로 분리도가 좋게 나타났다.

파장대별 분리도는 매개변수로 좋게 나타났으며, 0.45-0.52μm에서 분리도가 더 좋게 나타났을 것이라 할 수 있다.

분석결과 분류 향목 간에 분리도 측정에서 보면 영상 별로는 주택지와 고층건물, 도로와 고층건물이 분리도가 높게 나타났으며, 파장대별로는 논과 밭, 도로와 밭, 도로와 주택지의 분리도가 낮은 것으로 나타났다.

IV. 결론
본 연구는 위성영상의 종류에 따라 분리도 상관분석에 관한 연구로서, 분리도 측정 방법을 이용해 이용영상에 대
하여 적용하여 클래스 분류 정확도 결과와 비교하였고, 그 상관성을 측정하여 다음과 같은 결론을 얻었다.

첫째, 위성영상별로 클래스 분리도를 측정한 결과 분리도 값이 대체로 1.600-2.000으로 높게 나타났다.

더러운 경우는 `divergence'는 88.73%, 91.10%, 96.24%이고 bhattacharyya 거리는 78.62%, 83.55%, 95.61%로 나타났다. 클래스 조합과 면적조합을 모두 고려했을 경우 `divergence'가 bhattacharyya distance 에 비해 더 우수함을 알 수 있었다.

둘째, 분리도 측면에서 보면, 통계적 기법의 경우 분리도 측정을 위한 평균, 범위별 값 외에도 선정된 트레이닝의 최소 값이 통계적 특성치에도 상당히 민감한 것으로 나타났다. 트레이닝 결과 대부분 클래스에 대하여 그 평균과 분산을 모집단에 근사 시키고 있다는 것을 입증 하였다.

셋째, IKONOS 영상은 다른 영상과 달리 밴드사이의 상관관계가 높음을 알 수 있었다. 고해상도 위성의 경우 하나의 물체에 다양한 밴드 값이 존재하기 때문에 한정적으로는 파악하기에는 어려움이 따른 것으로 나타났다. IKONOS 영상 같은 경우에는 항공사진처럼 육안 관찰이 가능하도록 분류될 수 있는 모든 항목을 분류하는 것이 좋을 것으로 판단된다.

넷째, 통계적으로 각 분류 항목 간에 분리도 측정에서 보면 영상별로는 주택지와 고층건물, 도로와 고층건물이 분리도가 낮았으며, 파장대별로는 녹색 밝, 도로와 밝, 도로와 주택지의 분리도가 낮은 것으로 나타났다.

저자 소개

홍순현(Soon-Heon Hong) 정회원

주요학력

1985년 3월: 동아대학교 토목공학과(공학사)
1993년 3월: 동아대학교 대학원 토목공학과(공학박사)
현재: 부산대학교 산업토목학과 부교수

<관심분야>: 지형공간정보, 도시계획, 도로계획