품질경영 추진방식의 Infra 요인과 Process 요인의
생산경쟁력과 성과에 미치는 영향

장덕신* · 박정수** · 김수욱**

The Effect of 'Process' Factor and 'Infra' Factor in Quality Management on
Manufacturing Capabilities and Performance

Deok Shin Chang* · Jeong-Soo Park* · Soo Wook Kim**

■ Abstract ■

We categorize quality management practices as two factors: 'Infra factor' and 'Process factor.' We confirm the factors' statistical significance with empirical investigation about 167 manufacturing companies in nationwide. Moreover, we find the two factors affect positively on the manufacturing capabilities of differentiation and reliability, and on the performances as improving products and process. We prove these results with empirical method of structural equation model and AMCS program.

Keyword: Total Quality Management, Manufacturing Performance, Infra Factor, Process Factor, Differentiation, Reliability

1. 서 론

경쟁의 심화, 제품수명주기의 단축, 고객 요구의 다양화 등의 상황에 의해 기업의 경쟁은 날로 심화되여가고 있다. 정보통신기술의 발전 및 서비스산업의 증가는 전통적인 제조업체들의 시장 내에서의 비중과 영향력을 점점 더 감소시키고 있다. 그러나 그러한 상황 변화가 제조업의 필요성과

논문접수일 : 2006년 07월 31일 논문제출일 : 2007년 03월 05일
* 서울대학교 경영연구소 ** 서울대학교 경영학과 ⊡ 교신저자
2. 관련 문헌 연구

2.1 품질경영 추진방식 요인에 대한 연구

이후 Saraph[18]는 문헌연구와 기존의 대표을 종합하여 품질경영의 요인을 추출하고 이를 기초로 설문을 통하여, 제조 및 서비스 업체의 사업부 단위를 대상으로, 품질경영을 위한 8가지 주요 요인을 제시하였다. 그 내용을 보면, 최고경영자 리더십 역할과 품질정책, 품질관리의 역할, 교육훈련, 제품/서비스 설계, 공급자 품질경영, 공정관리, 품질자료의 보고, 종합관 판계가 있다. 이 분류는 본 연구의 두 가지 요인과도 밀접하게 연관되어 있다.

Bossink et al.[7]은 문헌연구를 통해 품질경영의 8가지 요인을 도출하여 경영자 및 종업원들의 면접을 통해 그러한 요인이 기업의 품질경영 성과에 어떠한 영향을 미치는지를 확인해 보았다. 그들이 제시한 요인은 전원참여(totality), 라인-스태프관계(line-staff relationship), 기술적 관계(technological perspective), 문화적 쟁점(cultural implantation), 경영진의 책임감(management commitment), 고객만족(uptstream emphasis), 시장조사를(market-in-approach) 등을 들었다.

품질관리 요인 분류에 대한 대표적 연구인 Flynn et al.[10]에서는 ‘세계최고수준제조능력’(world class manufacturing)의 다섯 가지 차원 - JIT, 인적자원 관리/조직특성, 생산전략, 기술경영, 품질관리 - 다섯 가지 차원에 ‘품질관리’를 포함시키고 있다. 이
연구에서는 품질관리 요인으로 최고경영진 지원, 품질정보, 공정관리(quality management, ĐM), 제품설계, 인력관리, 공급업체참여, 고객 참여를 들고 있다.

McLachlin[4]는 기존의 관점과는 달리, 품질 요소로서 공급업체품질수준, 두결점 품질관리(Zero defect quality control), 통계적 공정관리(statistical process control), 관리도(Chart)의 활용과 피드백 (Feedback)을 들고 있다.

Cua et al.[8]의 연구는 공정관리(quality management, 다기능자체시스템(-cross-functional product design), 공급업체품질수준, 고객 참여 등을 제시하였다.

Flyn[12]에서도, 품질관리 실행 요인으로서 품질에 대한 경영진 지원, 품질성과에 대한 보상, 피드백, 프로세스관리(quality control), 공급업체품질관리(supplier quality involvement)를 제시하였다.

이들은 ‘기반 추진방식’으로 최고경영자의 지원, 고객관계, 공급자관계, 작업인력 관리 및 작업태도를 제시하였다. ‘htags 경영자 지원이 조직 전체를 통하여 품질 성과 개선으로 나아가기 위한 추진방식과 행동을 장려하는데 필수적이며, 모든 차원에 영향을 미치는 요소이다. ‘과반관’은 고용의 요구를 명확히 함으로써 설계 프로세스에 적합한 투입물을 이끌어 내는 목적을 가지되, 이를 위해 고객과의 개방적 관계의 설정과 유도가 필요함을 의미한다.’공급업체 관계는 소수의 공급업체 선택과 그들과의 장기적 관계 유지를 핵심으로 하며, 비용보다는 품질 향상의 관점에서 공급업체 관계를 설정해야 함을 말한다. ‘작업인력 관리’는 문제해결과 보상에 있어서 기존과는 다른 접근을 통해 성과를 높이고 동기부여하며, 종업원의 아이디어의 중요성과 종업원의 지속적 성장과 발전을 지원하는 것을 의미한다. 마지막으로 ‘작업태도는 조직에의 충성도, 직무만족, 동료의 존중, 타 부서 직원들의 협력을 포함하는 긍정적인 작업 자세를 의미한다.

이들은, 활동실행요인으로 제품설계프로세스, 프로세스 환경관리, 통제적 공정관리와 피드백(Feedback)의 세 가지를 제시하였다. 효과적인 ‘제품설계프로세스’는 제품 신뢰성, 제품 특성, 서비스능력에 직접적 영향을 미치게 된다. 효과적인 ‘프로세스 환경관리’는 공정의 변화 및 오차를 감소시킴으로써 품질성과에 직접적 영향을 미치며, 변화와 오차를 줄이게 되면 불량의 가능성도 감소될 것이다. ‘동작적 공정관리와 피드백’의 활용은 불량품에 대한 정보를 관리자 및 기술자들에게 신속하고 정확하게 제공하며 이를 추적 및 개선함으로써 품질 개선에 직접적 영향을 미치게 된다.

참조문헌과 유사인[2]은 TQM의 추진방식(practice)의 특성을 제조업과 서비스업으로 구별하여 명확하게 정의하였는데, 제조업의 경우 8가지 범주로 구분하였다. ‘경영층 리더십(Leadership)’에는 경영층의 지원 및 관심과 품질문화 및 전략의 수립을 포함시
표 1 Flynn et al.[11]의 '기반 추진방식'·'핵심 추진방식'과 성과

<table>
<thead>
<tr>
<th>기반 추진방식</th>
<th>핵심 추진방식</th>
<th>성과</th>
</tr>
</thead>
<tbody>
<tr>
<td>고객관계</td>
<td>제품설계프로세스</td>
<td>각작된 품질의 시장성과</td>
</tr>
<tr>
<td>(customer relationship)</td>
<td>(product design process)</td>
<td>(perceived quality market outcomes)</td>
</tr>
<tr>
<td>최고경영진의 지원</td>
<td>프로세스호흡 관리</td>
<td>제품작업 없이 최종검사를 통과한 비율</td>
</tr>
<tr>
<td>(top management support)</td>
<td>(process flow management)</td>
<td>(percent passed final inspection with no rework)</td>
</tr>
<tr>
<td>공급업체관계</td>
<td>통계적 관리와 통제</td>
<td></td>
</tr>
<tr>
<td>(supplier relationship)</td>
<td>(statistical control and feedback)</td>
<td></td>
</tr>
<tr>
<td>직원인력관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(workforce management)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>작업태도</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(work attitude)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 2 제조업의 TQM 추진방식(정승환, 유성근[2])

<table>
<thead>
<tr>
<th>관리</th>
<th>구체적 실행방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>경영층의 리더십</td>
<td>경영층의 지원 및 관리, 품질문화 및 경제(전략)의 수립</td>
</tr>
<tr>
<td>교육 및 훈련</td>
<td>교육훈련에 대한 지원</td>
</tr>
<tr>
<td>시스템 설계</td>
<td>내외적 협력관계 계립, 부서 간 상호협조</td>
</tr>
<tr>
<td>공급업체 관리</td>
<td>공급업체의 프로그램 참여, 공급자 품질 및 성과 관리</td>
</tr>
<tr>
<td>프로세스 관리</td>
<td>품질검사, 사전점검활동</td>
</tr>
<tr>
<td>품질데이터 관리</td>
<td>자료기록 및 보관, 평가자료로서의 활용, 종업원에게 피드백(feedback)</td>
</tr>
<tr>
<td>직원들과의 관계</td>
<td>종업원의 자기질문 지원, 종업원 참여 및 권한 위임, 보상제도 및 평가제도</td>
</tr>
<tr>
<td>품질부서의 역할</td>
<td>품질관리부서의 위상, 최고경영진의 접근, 조직의사결정에 미치는 영향</td>
</tr>
</tbody>
</table>

'표준견고'는 '교육 및 훈련'은 교육훈련에 대한 지원을 내용으로 한다. '시스템 설계'의 범주에는 내외적 협력 관계의 정립과 부서간 상호협조가 포함되며, '공급업체 관리'는 공급업체의 프로그램 참여와 공급자 품질 및 성과 관리로 한다. '프로세스 관리'는 품질검사와 사전점검활동을 포함시켰으며, '품질데이터 관리'는 자료기록 및 보관, 평가자료로서의 활용, 종업원에 대한 피드백(feedback)을 내용으로 한다. '직원들과의 관계' 범주는 종업원의 자지질선 지원, 종업원 참여 및 권한 위임, 보상제도 및 평가제도로 구성되며, 마지막으로 '품질부서의 역할은 품질관리부서의 위상, 최고경영진의 접근, 조직의사결정에 미치는 영향을 내용으로 한다.

이러한 TQM에 대한 요인들은 종합하여 본다면, 일반적으로 리더십(leaderhip), 전략계획(strategic planning), 고객초점을(customer focus), 정보 및 분석 능력(information and analysis), 인력관리(people management), 프로세스관리(process management)가 공통적으로 반드시 연계되는 핵심요인들이라고 볼 수 있다(Prajogo and Shoal[16]).

2.2 생산경쟁력의 개념

생산관리 부문의 경쟁력으로는 '원가(cost)', '유연성(flexibility)', '품질(quality)'의 전통적 요소에 최근에는 '시간(time)', '고객서비스(service)', '위치의 편의성(location)'을 포함시키기도 한다(Stevenson[4]).

생산관리의 경쟁력과 성과에 대한 대표적인 연구인 Kim and Arnold[13]에서는 이용 및 원가 절감능력을 '가격(price)'능력, 설계변경 능력, 신제품 도입능력, 수량변경능력, 제품믹스 변경능력, 다양한 제품 라인의 제공능력을 '유연성(flexibility)'능력, 고객기대의 충족 능력, 제품 및 서비스의 효익 및 성과, 제품의 신뢰성을 '품질(quality)'능력, 신속한 배달능력, 적시배달 능력을 '배달(delivery)'능력, 효과적인
사후서비스 제공 능력, 지원 능력, 유통 능력, 고객 육구를 충족시키는 맞춤화(customize) 능력을 ‘서비스(service)능력’을 생산경쟁력으로 들고 있다.

〈표 3〉Kim and Arnold[13]의 생산경쟁력 요인

<table>
<thead>
<tr>
<th>생산경쟁력</th>
<th>구성요소</th>
</tr>
</thead>
<tbody>
<tr>
<td>가격</td>
<td>비용, 원가 절감능력</td>
</tr>
<tr>
<td>유연성</td>
<td>설계변경 능력, 신제품 도입능력</td>
</tr>
<tr>
<td></td>
<td>생산수량변경능력</td>
</tr>
<tr>
<td></td>
<td>제품mix변경능력</td>
</tr>
<tr>
<td></td>
<td>다양한 제품라인의 제공능력</td>
</tr>
<tr>
<td>품질</td>
<td>고객기대의 충족 능력</td>
</tr>
<tr>
<td></td>
<td>제품 및 서비스의 효익 및 성과</td>
</tr>
<tr>
<td></td>
<td>제품의 신뢰성</td>
</tr>
<tr>
<td>배달</td>
<td>신속한 배달능력</td>
</tr>
<tr>
<td></td>
<td>적시배달 능력</td>
</tr>
<tr>
<td>서비스</td>
<td>효과적인 사후서비스 제공 능력</td>
</tr>
<tr>
<td></td>
<td>지원 능력</td>
</tr>
<tr>
<td></td>
<td>유통 능력</td>
</tr>
<tr>
<td></td>
<td>고객 육구를 충족시키는 맞춤화(customize) 능력</td>
</tr>
</tbody>
</table>

보다 최근의 Swink et al.[19]의 연구에서는 제조 경쟁력(manufacturing capability)로서 맞춤화된 제품 제공능력, 생산량 조정 능력, 다양한 제품 제공 능력을 ‘프로세스 유연성(process flexibility)’, 신제품 도입기간, 매년 도입되는 신제품의 숫자를 ‘신제품 유연성(new product flexibility)’ 단위당 비용 및 원가, 총 제조경비, 생산성을 ‘원가효율성(cost efficiency)’으로 활용되었다.

〈표 4〉Swink, Narasimahan and Kim[19]의 제조 경쟁력

<table>
<thead>
<tr>
<th>제조경쟁력</th>
<th>구성요소</th>
</tr>
</thead>
<tbody>
<tr>
<td>프로세스 유연성</td>
<td>맞춤화된 제품 제공능력</td>
</tr>
<tr>
<td></td>
<td>생산량 조정 능력</td>
</tr>
<tr>
<td></td>
<td>다양한 제품 제공능력</td>
</tr>
<tr>
<td>신제품 유연성</td>
<td>신제품 도입기간</td>
</tr>
<tr>
<td></td>
<td>매년 도입되는 신제품의 숫자</td>
</tr>
<tr>
<td>원가 효율성</td>
<td>단위당 비용 및 원가</td>
</tr>
<tr>
<td></td>
<td>총 제조경비</td>
</tr>
<tr>
<td></td>
<td>생산성</td>
</tr>
</tbody>
</table>

3. 연구 모형

그리고 본 연구에서는 앞에서 언급된 다양한 생산경쟁력 중에서, 다양한 제품 제공 능력 및 제품라인의 다양성, 다른 제품과의 차별성을 ‘다양화능력(Differentiation capability)’으로, 그리고 제품의 품질로 앞서는 능력, 믿을 수 있는 제품을 적은 가격으로 제공하는 능력, 타 업체보다 앞서는 제품의 품질경쟁력을 ‘신뢰성능력(Reliability capability)’으로 정의하여 실증연구에서 활용하고자 한다.

이러한 개념들과 그것의 조작적 정의 그리고 관련 연구들은 아래 표와 같다.

이러한 개념 및 조작적 정의를 바탕으로 하여, 본 연구에서는 품질경영 추진방식에서의 Infra 요인이 다양화 능력과 신뢰성 능력의 두 가지 생산경쟁력에 근거한 영향을 미치는지를 살펴보고자 한다. 이와 관련한 연구가설은 아래와 같다.

연구가설 1 : Infra 요인이 다양화능력에 정(+)의 영향을 미친다.

연구가설 2 : Infra 요인이 신뢰성능력에 정(+)의 영향을 미친다.

연구가설 3 : Process 요인이 다양화능력에 정(-)의 영향을 미친다.

연구가설 4 : Process 요인이 신뢰성능력에 정(+)의 영향을 미친다.
<table>
<thead>
<tr>
<th>개념</th>
<th>측정항목 및 변수</th>
<th>관련 및 참고한 문헌</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infra.요인 (Infra)</td>
<td>최고경영자의 품질신념(Top)</td>
<td>Flynn et al.[11]</td>
</tr>
<tr>
<td></td>
<td>부서장의 품질에 대한 책임(Res.)</td>
<td>정승환, 유성근[2]</td>
</tr>
<tr>
<td></td>
<td>직원들의 문제해결, 제안의 적극성(Pbm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>고용권한의 우선권 목표 정도(CS)</td>
<td></td>
</tr>
<tr>
<td>Process.요인 (Process)</td>
<td>공정관리에 통계적 방법 사용(QSM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>통질경영에 통계소프트웨어 사용(QSW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>표준화, 메뉴얼의 활용(Manu)</td>
<td></td>
</tr>
<tr>
<td>다양화능력 (Differen)</td>
<td>제품의 차별성(Product Differentiation))</td>
<td>Kim and Arnold[13]</td>
</tr>
<tr>
<td></td>
<td>다양한 제품라인, 구색(Preference)</td>
<td>Swink, Narasimhan</td>
</tr>
<tr>
<td></td>
<td>제품설계변경능력(Design Change)</td>
<td>and Kim[19]</td>
</tr>
<tr>
<td>신뢰성능력 (Reliaib)</td>
<td>타업체와 비교한 품질경쟁력(Quality Competitiveness)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>제품의 품질 수준(Product Quality)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>신뢰성있는 제품을 저가생산(Low Cost)</td>
<td></td>
</tr>
<tr>
<td>생산성과 (Perform)</td>
<td>제품개량능력의 향상(Product Improvement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>공정관리능력의 향상(Process Improvement)</td>
<td></td>
</tr>
</tbody>
</table>

그리고 나아가 그러한 생산경쟁력이 생산성과에 금정적 영향을 미치는지를 실증분석을 통하여 실재 보고자 한다.

연구가설 5: 다양화 능력은 생산성과에 정(+)의 영향을 미친다.
연구가설 6: 신뢰성 능력은 생산성과에 정(+)의 영향을 미친다.

이러한 개념과 가설에 의한 연구모형은 [그림 1]과 같다.

![그림 1] 연구모형

이러한 연구모형의 분석을 위하여, 본 연구에서는 관측된 외생변수와 내생변수의 개념과, 실제 관측하지 않는 '잠재변수' 또는 개념적 '구간'(concept)간의 관계를 검토하기 위하여 AMOS 프로그램을 이용하는 '구조방정식'모형의 연구방법을 활용하였다.

4. 실증분석

4.1 연구대상 업체

본 연구의 분석을 위한 설문은, 서울 및 경기 지역은 물론, 충남, 경북 구미, 전북 등 전국 각 지역에 소재한 173개 제조업체를 대상으로 이루어졌으며, 그 중 응답되지 않은 부분이 있는 6개의 설문지를 제외하고 167개의 설문지가 분석되었다.

연구대상 업체들을 매출액 별로 살펴보면, 100억 이하는 50개, 100억에서 500억 사이의 업체가 26개, 500억에서 1천억 사이의 업체가 6개, 1천억에서 5천억 사이의 업체가 23개, 5천억 이상이 20개 업체였다.

연구대상 업체를 규모 별로 분석해 보면, 100억
미만의 소규모 업체는 82개 업체, 100명에서 1000명의 중간 규모 업체가 55개 업체, 1000명 이상의 대기업이 30개 업체로 조사되었다.

<table>
<thead>
<tr>
<th>매출액</th>
<th>업체 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>100억 미만</td>
<td>54</td>
</tr>
<tr>
<td>100~500억</td>
<td>40</td>
</tr>
<tr>
<td>500~1천억</td>
<td>13</td>
</tr>
<tr>
<td>1천억~5천억 미만</td>
<td>31</td>
</tr>
<tr>
<td>5천억 이상</td>
<td>29</td>
</tr>
<tr>
<td>계</td>
<td>167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>전체 사원 수</th>
<th>업체 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>100명 미만</td>
<td>82</td>
</tr>
<tr>
<td>100~1000명</td>
<td>55</td>
</tr>
<tr>
<td>1000명 이상</td>
<td>30</td>
</tr>
<tr>
<td>계</td>
<td>167</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>업종</th>
<th>업체 수</th>
</tr>
</thead>
<tbody>
<tr>
<td>전자</td>
<td>40</td>
</tr>
<tr>
<td>기계</td>
<td>43</td>
</tr>
<tr>
<td>화학</td>
<td>24</td>
</tr>
<tr>
<td>반도체 및 정보산업</td>
<td>18</td>
</tr>
<tr>
<td>금속</td>
<td>7</td>
</tr>
<tr>
<td>건설</td>
<td>2</td>
</tr>
<tr>
<td>식품</td>
<td>14</td>
</tr>
<tr>
<td>의학품</td>
<td>8</td>
</tr>
<tr>
<td>기타(제판, 인쇄, 봉제 등)</td>
<td>11</td>
</tr>
<tr>
<td>계</td>
<td>167</td>
</tr>
</tbody>
</table>

설문 대상이 되었던 업체들을 업종에 따라 구분해 보면, 전자산업에 속하는 업체가 40개 업체, 기계관련 제조업체가 43개 업체, 화학 산업에 해당하는 업체가 24개 업체, 반도체 제조 및 정보산업 관련 업체가 18개 업체, 금속 제조 관련 업체가 7개였으며, 레이온 및 아스콘을 포함한 건설업체가 2개, 식품 제조업체가 14개, 의약품 제조업체가 8개, 의류 및 부품 제조업, 인쇄, 제판, 라벨제조 등의 기타 업종에 해당하는 업체가 11개 업체였다. 특히, 전자산업과 반도체 업체의 경우 5천만원 이상 대규모 업체는 같은 회사라도 사업부 별로 설문을 수행하여, 동일한 업체에서 중복 설문을 받는 폐해를 방지하였다.

4.2 확정적 요인분석

앞에서 언급된 개념들과 조직적 정의가 적합한지 확인하기 위하여 AMO 프로그램을 활용하여 확정적 분석을 실행하였다.

먼저 품질관리 추진방식의 Infra 요인과 Process 요인에 대한 확인분석을 실행하였다.

실험결과, <표 9>와 같이 적합도(Goodness-of Fit Index)가 0.971로 나타나 일반적 기준인 0.5를 훨씬 넘고 있다.

<table>
<thead>
<tr>
<th>지수(index)</th>
<th>χ^2 통계량</th>
<th>자유도</th>
<th>RMR</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>RFI</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>결과수치</td>
<td>17.884</td>
<td>13</td>
<td>0.053</td>
<td>0.971</td>
<td>0.937</td>
<td>0.966</td>
<td>0.945</td>
<td>0.990</td>
</tr>
</tbody>
</table>
표 10 Infra 요인과 Process 요인에 대한 측정된 외생변수 유의도 검정 결과

<table>
<thead>
<tr>
<th>CS ← Infra</th>
<th>Estimate</th>
<th>Standardized</th>
<th>S.E.</th>
<th>C.R.(t)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.625</td>
<td>-</td>
<td>0.208</td>
<td>7.280</td>
<td>0.000**</td>
</tr>
<tr>
<td>Pbm ← Infra</td>
<td>1.515</td>
<td>0.738</td>
<td>0.203</td>
<td>7.450</td>
<td>0.000**</td>
</tr>
<tr>
<td>Res ← Infra</td>
<td>1.509</td>
<td>0.768</td>
<td>0.187</td>
<td>7.127</td>
<td>0.000**</td>
</tr>
<tr>
<td>Top ← Infra</td>
<td>1.336</td>
<td>0.714</td>
<td>0.208</td>
<td>8.972</td>
<td>0.000**</td>
</tr>
<tr>
<td>Manu ← Process</td>
<td>1.000</td>
<td>0.644</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QSW ← Process</td>
<td>1.864</td>
<td>0.815</td>
<td>0.214</td>
<td>9.289</td>
<td>0.000**</td>
</tr>
<tr>
<td>QSM ← Process</td>
<td>1.991</td>
<td>0.962</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

주) ** p ≤ 0.01에서 유의함.
* p ≤ 0.05에서 유의함.

표 11 생산경쟁력 요인에 대한 확인적 요인분석의 적합도 수치

<table>
<thead>
<tr>
<th>자수(index)</th>
<th>(\chi^2) 값</th>
<th>자유도</th>
<th>RMR</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>RFI</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>결과수치</td>
<td>17,397</td>
<td>8</td>
<td>0.068</td>
<td>0.967</td>
<td>0.915</td>
<td>0.945</td>
<td>0.897</td>
<td>0.968</td>
</tr>
</tbody>
</table>

표 12 생산경쟁력 요인의 확인적 요인분석에 대한 내생변수 유의도 검정 결과

<table>
<thead>
<tr>
<th>DC ← Differen</th>
<th>Estimate</th>
<th>Standardized</th>
<th>S.E.</th>
<th>C.R.(t)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.615</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CR ← Differen</td>
<td>0.819</td>
<td>0.543</td>
<td>0.148</td>
<td>5.546</td>
<td>0.000**</td>
</tr>
<tr>
<td>PD ← Differen</td>
<td>1.158</td>
<td>0.712</td>
<td>0.173</td>
<td>6.682</td>
<td>0.000**</td>
</tr>
<tr>
<td>LC ← Reliab</td>
<td>1.000</td>
<td>0.521</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PQ ← Reliab</td>
<td>1.456</td>
<td>0.851</td>
<td>0.225</td>
<td>6.484</td>
<td>0.000**</td>
</tr>
<tr>
<td>QC ← Reliab</td>
<td>1.146</td>
<td>0.773</td>
<td>0.181</td>
<td>6.320</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

주) ** p ≤ 0.01에서 유의함.
* p ≤ 0.05에서 유의함.

그림 3 생산경쟁력 요인의 확인적 요인분석

이상에서, 두 요인의 유의도 검정 결과는 <표 10>과 같이 1% 유의수준에서 모두 유의한 것으로 나타났다.

<표 11>에는 생산경쟁력의 다양화능력과 신뢰성 능력에 대한 확인적 요인분석의 결과를 살펴본다.

<표 12>에서 볼 수 있듯이, 두 가지 경쟁력 요인 역시 적합도 0.967이며, 1% 유의수준에서 모두 유의한 결과를 보이고 있다.

4.3 모형의 분석결과

앞에서 제시된 모형에 대한 실증적 분석을 수집된 설문조사를 바탕으로 하여 AMOS 프로그램을 통하여 분석하였다.
품질경영 추진방식의 Infra 요인과 Process 요인이 생산경영력과 성과에 미치는 영향

(그림 4)에서 ‘실전’은 1% 유의수준에서 유의한 것을 의미하며, ‘점선’은 그렇지 못한 것을 표시한다. 즉 연구가설 1, 2, 5만이 채택되었다.

그리고 다양화능력의 생산성과에 유의한 영향을 미치고 있으나, 아래 표에 나타난 것과 같이 신뢰성 능력(연구가설 6)은 p-value가 0.06로써 작은 차이로 유의하지 않은 것으로 나타났다.

모형의 적합도(GFI)는 0.91로 나타나 일반적 기준을 넘고 있으며, 다른 지수 및 유의성 검정 결과는 아래 표와 같다.

(표 13) 연구모형의 적합도 수치

<table>
<thead>
<tr>
<th>지수(index)</th>
<th>χ^2 통계량</th>
<th>자유도</th>
<th>RMR</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>RFI</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>결과수치</td>
<td>129.256</td>
<td>83</td>
<td>0.078</td>
<td>0.911</td>
<td>0.897</td>
<td>0.890</td>
<td>0.880</td>
<td>0.957</td>
</tr>
</tbody>
</table>

(표 14) 연구모형에 대한 유의성 검정결과

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Standardized</th>
<th>S.E.</th>
<th>C.R.(t)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differen ← Infra</td>
<td>0.865</td>
<td>0.794</td>
<td>0.168</td>
<td>5.152</td>
<td>0.000**</td>
</tr>
<tr>
<td>Reliab ← Infra</td>
<td>0.654</td>
<td>0.724</td>
<td>0.146</td>
<td>4.470</td>
<td>0.000**</td>
</tr>
<tr>
<td>Differen ← Process</td>
<td>0.173</td>
<td>0.154</td>
<td>0.122</td>
<td>1.414</td>
<td>0.157</td>
</tr>
<tr>
<td>Reliab ← Process</td>
<td>0.039</td>
<td>0.042</td>
<td>0.102</td>
<td>0.381</td>
<td>0.703</td>
</tr>
<tr>
<td>Perform ← Differen</td>
<td>0.574</td>
<td>0.562</td>
<td>0.148</td>
<td>3.877</td>
<td>0.000**</td>
</tr>
<tr>
<td>Perform ← Reliab</td>
<td>0.303</td>
<td>0.246</td>
<td>0.162</td>
<td>1.875</td>
<td>0.061</td>
</tr>
<tr>
<td>101 ← Infra</td>
<td>1.000</td>
<td>0.699</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>102 ← Infra</td>
<td>1.120</td>
<td>0.745</td>
<td>0.131</td>
<td>8.545</td>
<td>0.000**</td>
</tr>
<tr>
<td>106 ← Infra</td>
<td>0.775</td>
<td>0.633</td>
<td>0.105</td>
<td>7.341</td>
<td>0.000**</td>
</tr>
<tr>
<td>105 ← Infra</td>
<td>1.101</td>
<td>0.702</td>
<td>0.136</td>
<td>8.102</td>
<td>0.000**</td>
</tr>
<tr>
<td>110 ← Process</td>
<td>1.000</td>
<td>0.657</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>109 ← Process</td>
<td>1.850</td>
<td>0.825</td>
<td>0.201</td>
<td>9.184</td>
<td>0.000**</td>
</tr>
<tr>
<td>108 ← Process</td>
<td>1.923</td>
<td>0.948</td>
<td>0.200</td>
<td>9.607</td>
<td>0.000**</td>
</tr>
<tr>
<td>16 ← Differen</td>
<td>1.000</td>
<td>0.592</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34 ← Differen</td>
<td>0.845</td>
<td>0.539</td>
<td>0.152</td>
<td>5.562</td>
<td>0.000**</td>
</tr>
<tr>
<td>31 ← Differen</td>
<td>1.214</td>
<td>0.718</td>
<td>0.179</td>
<td>6.788</td>
<td>0.000**</td>
</tr>
<tr>
<td>35 ← Reliab</td>
<td>1.000</td>
<td>0.518</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33 ← Reliab</td>
<td>1.422</td>
<td>0.827</td>
<td>0.223</td>
<td>6.367</td>
<td>0.000**</td>
</tr>
<tr>
<td>12 ← Reliab</td>
<td>1.191</td>
<td>0.799</td>
<td>0.189</td>
<td>6.315</td>
<td>0.000**</td>
</tr>
<tr>
<td>g31 ← Perform</td>
<td>1.000</td>
<td>0.850</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g32 ← Perform</td>
<td>0.844</td>
<td>0.735</td>
<td>0.104</td>
<td>8.128</td>
<td>0.000**</td>
</tr>
</tbody>
</table>

주) ** p ≤ 0.01에서 유의함.
 * p ≤ 0.05에서 유의함.
5. 결 론

생산관리 특히 제조업체의 관리에서 품질의 중요성은 예전에도 강조되어 왔으나, 시간의 흐름과 기업경쟁의 심화에 따라 더욱 격차되거나는 상황에 있다. 이러한 배경에서 '전략적 품질경영'의 개념이 상위화된 최근의 기업환경 하에서 품질경영과 생산경영의 간의 관계성을 살펴보려 한다 이 논문의 목적이었다.

전국에 소재한 제조업체들 대상으로 한 실증연구 결과, 본 연구에서 설정한 품질경영 추진방식의 Infra 요인과 Process 요인, 생산경영력의 다양화능력과 신뢰성, 능력이라는 분류는 확인적 요인분석 결과 유의하고 적합한 것으로 나타났다. 이에 기초하여 각 요인은 두 가지 경쟁능력에 유의한 영향을 미치고, 나아가 두 가지 경쟁력이 생산성에 유의한 영향을 미친다는 모형을 설정하였다.

분석 결과, Infra 요인은 두 가지 경쟁력 요인에 모두 유의한 영향을 미치고, 다양화능력은 생산성에 유의한 영향을 미친다는 가설은 재확인되었다. 신뢰성능력이 생산성에 영향을 미친다는 가설은 근소한 차이로 기각되었다. 이는 Process 요인은 실제로 두 가지 요인에 '직접적' 영향을 미치지 않고, Infra 요인을 통하여 '간접적' 영향을 미친다는 설명을 가능하게 한다.

이러한 결론에 의하되, 우리나라의 제조업체들은 아직까지 품질경영의 하드웨어에 대응하는 크면(Process 요인과 관련)이 실제로 그렇게 활발하게 활용되지 않고 있으며, 실제 운영에 있어 최고 경영자를 비롯한 '인적' Infra 요인과 관련) 측면의 노력을 실패로 보다 낙에 성과를 가능하게 한다는 설명이 가능하게 될 것이다.

향후의 연구 방향으로는, 본 연구의 둘 내에서 다른 경쟁력 요인을 도출하여 적용시키는 것과, 생산 전략 측면과 또는 JIT 생산방식, 공급사슬관리(SCM)와 같은 다른 관점들과의 관련성을 살펴보는 연구를 생각해 볼 수 있을 것이다.

참 고 문 현

