Bol Bearing의 응력 기반 접촉피로수명 예측
김태완*, 조용주*

Stress based Fatigue Life Prediction for Ball Bearing

Tae-Wan Kim* and Yong-Joo Cho*

ABSTRACT

The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with L50 life of L-P model, Crossland criterion for the radial load increment is similar to L50 life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact, there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

Key Words : Stress based fatigue life (응력기반 피로수명), Ball bearing (볼베어링), EHL (탄성유체활합), High cycle fatigue (고주기 피로)

1. 서론

구름 베어링에 대한 수명 계산은 크게 외력 기반(external loads based), 전동체 하중 기반(rolling element loads based), 접촉 응력 기반(contact stress based) 등 3 가지로 구분할 수 있다. 외력 기반 수명예측법은 L-P 이론에 기초한 가장 손쉽게 베어링의 수명을 예측할 수 있는 실험적인 공학적 모델이며 전동체 하중 기반 수명예측법은 구름 베어링의 시스템 해석을 통해 구글의 전동체 하중을 이용하고, 실험과 통계적인 접근방법으로 구한 각종 지수들을 이용하여 구름베어링의 수명을 예측하는 방법으로 비교적 고급 응용분야에 활용되고 있으나 이 역시 측정에 대한 공학적 모델이 필요할 수 있다. 이러한 외력기반 및 전동체 하중 기반의 기법은 구름베어링 초기부터 지금까지 많은 연구가 진행되어 오고 있다. L-P 이론은 베어링의 파손원인이 접촉 표면 아래에서 구름방향과 평행한 작전단단응력으로 인하여 피로 균열이 발생하고 이의 진전에 의하여 접촉면에 스팬닝(spalling) 혹은 피팅(pitting)이 발생한다는 최대 전단 응력실을 전체로 수많은 베어링 피로수명 실험결과

그러나 현재의 베어링 응용분야는 갈수록 고부하용량을 지향하면서도 소형화를 요구하고 있으므로 보다 핵심적인 설계에 있어서는 보다 정확한 수명예측법이 필요하다. 따라서 기존의 실질적인 계수 기반(factor-based) 수명식보다는 해석적인 응력 기반의 수명식이 더욱 근본적 목적으로 좋은 자료를 구성할 수 있다. 최근 ISO 281에서도 온력 기반의 통합 수명예측법의 필요성을 언급하고 있다.

본 연구에서는 탄성유체응용해석기법과, 표현이론적 응력계산 기법, 그리고 고주기 피로모델을 응용하여 계산기반의 볼 베어링 피로수명을 예측하는 기법을 소개하고자 한다. Fig. 1은 본 연구에서 수행한 볼 베어링의 피로수명을 예측하기 위한 해석과 계산에 대한 전체적인 프로세스를 도식화한 것이다. 우선 볼 베어링의 기하학적 분석을 통해 내부형상함수를 구하여 하나의 등급에 표면과 반무한체와의 접촉으로 모델링한다. 그리고 볼 베어링의 시스템 분석을 통해 볼 베어링에 작용하는 축방향 및 반방향 외력으로부터 각각의 전동체와 원도를 사이에 작용하는 전동체 하중을 구한다. 구간은 전동체 하중과 형상정보로부터 탄성응용해석을 수행하여 초기 표면 압력을 계산하는데 이는 탄성유체응용해석으로서의 초기값에 대한 초기값으로 입력하기 위함이다. 표면 접촉압력은 영향수법을 이용한 반무한체 해석을 통해 계산하였다. 이렇게 계산한 초기 표면압력, 형상함수, 운율유 유입속도, 그리고 가정

한 운율유 성질에 관한 정보들을 가지고 탄성유체응용해석을 수행하여 실제 운율면에 작용하는 표면 압력을 계산한다. 탄성유체응용해석은 뉴턴 럭스법을 이용하였다. 표면하의 응력분포를 구하기 위해서 표면에 작용하는 압력분포를 사각조각으로 이산화시키고 Love와 Cho의 사각조각에 대한 해를 이용하여 표면하의 응력장을 구한다. 표면하의 응력 정보로부터 피로해석을 수행하기 위해서 다축 응력상태에서 적용할 수 있는 세가지 고주기 피로파인드를 이용하여 볼 베어링의 피로수명을 예측한다.

이상 정립된 해석기법을 적용하기 위한 예제로서 현재 양산되고 있는 6209 볼 베어링에 대하여 작동조건에 따른 피로수명을 예측하였으며 이 결과를 기존의 전동체 하중 기반의 수명 예측기법의 결과와 비교하였다.

2. 이론

2.1 볼 베어링의 형상 및 모델링

볼 베어링의 접촉해석 및 탄성유체응용해석을 위해서는 형상함수가 필요하다. 해석의 편의를 위
해 불과 체도문의 접촉은 하나의 등가 표면 (equivalent surface)과 각 체도문의 접촉으로 모델링 할 필요가 있다. Fig. 2는 불과 체도문의 형상할 수, 즉 두 표면간의 간격을 계산하기 위함으로, 체도문의 경우 불이 안착되는 귀부부 (groove)부와 귀부와 쇼울더 (shoulder) 사이의 곡률부, 그리고 쇼울더부로 나누어 식 (1), (2), (3)으로 각각 나타낼 수 있다.

\[
Z = \sqrt{(R_r - (r_f^2 - X^2)^{1/2})^2 - Y^2} \quad \text{at } X_r \geq X \quad (1)
\]

\[
Z = \sqrt{(R_f + (r_f^2 - (X_r - X)^2)^{1/2})^2 - Y^2} \quad \text{at } X > X_r \quad (2)
\]

\[
Z = \sqrt{(R_f^2 - Y^2)} \quad \text{at } X = X_r \quad (3)
\]

여기서, \(R_r \)은 베어링 축심면에서 체도문의 곡률 중심까지의 거리, \(r_f \)는 체도문의 곡률 반경, \(R_f = R_r - r_f \), \(R_r \)는 쇼울더 반경, \(r_f \)는 귀부와 쇼울더 사이 곡률 부의 곡률 반경이다. 본 연구에서 적용하고자 하는 베어링은 왕난 함베어링이므로 쇼울더의 높이\((h) \)을 충분히 크게 하여 완전한 타원 접촉형태를 가진 것으로 가정하였다.

\[
F = \{ F_x, F_y, F_z, M_x, M_y \}^T \quad (4)
\]

\[
\delta = \{ \delta_x, \delta_y, \delta_z, \theta_x, \theta_z \}^T \quad (5)
\]

각각의 전동체는 케이지에 의하여 원주 방향으로 동 진격으로 위치하게 되며, 각 전동체의 각 위치\((\psi_j) \)는 다음 식과 같이 나타낼 수 있다.

\[
\psi_j = \frac{2\pi}{z} (j-1) \quad (6)
\]

만약 불에 작용하는 외 성파력과 차이로스코픽 모멘트를 무시한다면, 내/외환의 전동체 하중 및 접촉각은 식 (7)과 식 (8)과 같이 동일하게 된다.

\[
Q_{oj} = Q_{ij} = Q_j \quad (7)
\]

\[
\alpha_{oj} = \alpha_{ij} = \alpha_j \quad (8)
\]

Fig. 4에서 보는 바와 같이, 변형 후 내/외환 체도 곡률 중심간의 거리\((g) \)는 다음과 같이 표현 될 수 있다.

\[
s_j = Bd_g + \delta_y + \delta_{oj} = \sqrt{A_{ij}^2 + A_{oj}^2} \quad (9)
\]

여기서, \(Bd_g = (f_j + f_o - 1)d_g \)는 변형전의 체도 곡률 중심간의 거리이며, \(\delta_y \) 및 \(\delta_{oj} \)는 \(j \)번째 불과 내/외환 체도 및 불과 외환 체도 사이의 변형량이 다. 불과 내/외환 사이의 변형량의 합을 전체 변형량\((\delta_{oj}) \)이라 하면 이는 식 (10)로 나타낼 수 있으며, 이 때 불과 체도문의 접촉각은 식 (11)으로부터 구할 수 있다.

\[
\delta_j = \delta_y + \delta_{oj} = s_j - Bd_g = \sqrt{A_{ij}^2 + A_{oj}^2} - Bd_g \quad (10)
\]

\[
\alpha_j = \tan^{-1} \left[\frac{A_{jy}}{A_{jz}} \right] \quad (11)
\]

전통체 하중 \(Q_j \)는 Hertz 식으로부터 다음 식과
Fig. 3 Loads and displacement of a ball bearing

Fig. 4 Shape of ball-raceway contact under static loads

\[F_z - \sum_{j=1}^{i} Q_j \sin \alpha_j = 0 \]
(14)

\[F_y - \sum_{j=1}^{i} Q_j \cos \alpha_j \sin \psi_j = 0 \]
(15)

\[F_z - \sum_{j=1}^{i} Q_j \cos \alpha_j \cos \psi_j = 0 \]
(16)

\[M_y - R_i \sum_{j=1}^{i} Q_j \sin \alpha_j \cos \psi_j = 0 \]
(17)

\[M_z - R_i \sum_{j=1}^{i} Q_j \sin \alpha_j \sin \psi_j = 0 \]
(18)

이들 5개의 식은 비선형 방정식으로 Newton-Raphson 방법에 의해 5개의 미지수 \((\delta_x, \delta_y, \delta_z, \theta_x, \theta_y)\)을 구할 수 있으며, 전동체 하중(\(Q\)), 접촉각(\(\alpha\))의 분포를 구할 수 있다.

2.3 탄성유체운동 해석

일반확립 Reynolds 방정식 \(^{14}\)으로부터 시간에 관한 항을 무시하고 유압유가 \(x\) 방향으로만 일정 속도로 유입된다면 최종적으로 식 (19)와 같이 유도될 수 있다.

\[\frac{\partial}{\partial x} \left(\frac{\rho h^3}{\eta} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\rho h^3}{\eta} \frac{\partial p}{\partial y} \right) = 12 \frac{\partial (\rho h)}{\partial x} \]
(19)

여기서, \(\bar{u} = (u_1 + u_2)/2\)로서 유압의 평균속도를 의미한다. 식 (19)를 줄기 위하여 본 연구에서는 다음과 같은 Reynolds 경계조건을 적용하였다.

\[p = 0 \quad \text{at} \ x_{in} \]
\[p = \frac{\partial p}{\partial x} = 0 \quad \text{at} \ x_{out} \]
(20)

식 (9)에서 구해진 압력은 다음과 같은 하중조건을 만족해야 한다.

\[w = \iint p dx dy \]
(21)

유압은 높은 압력의 계수를 받게 되면 점도는 압력의 영향에 의하여 변화하게 된다. 본 연구에서는 Roelands\(^{15}\)가 제시한 점도-압력 관계식을 적용한다.
\[\eta = \eta_0 \left(\frac{\eta_m}{\eta_0} \right)^{1-(1+p/c_p)^4} \]
\[\eta_m = 6.31 \times 10^{-5} N s/m^2 \]
\[c_p = 1.96 \times 10^8 N/m^2 \]
(22)

여기서 \(p \) 는 압력, \(\eta_0 \)는 대기압 상태\((p=0)\)에서의 점도이고 \(z \)는 점도-압력 계수이다. 융합유의 밀도-압력 관계는 Dowson 과 Higginson\(^{16} \)이 제시한 다음의 식을 적용한다.

\[\rho = \rho_0 \left(1 + \frac{0.6 \times 10^{-8} p}{1 + 1.7 \times 10^{-9} p} \right) \]
(23)

여기서, \(\rho_0 \)는 대기압 상태\((p=0)\)에서의 밀도이다.

탄성유체운동의 재배방정식은 비선형성은 강하므로 수치해석에 의하여 수렴된 결과를 얻는 것은 쉽지 않다. 또한, 탄성변형과 압력, 점도와 압력, 밀도와 압력 등이 서로 연관되어 있는 문제에서 이들의 상관 관계를 해석단계에서 반영할 수 있는 방법을 적용하여 해의 정확도를 높여야 한다.\(^{17} \) 따라서 본 연구에서는 비선형 방정식에 대하여 수렴성이 높고 여러 변수들의 상관 관계를 반영할 수 있는 뉴턴 하프법을 유한 차분법에 적용하여 해를 구하였다.

2.4 표면이하 음력 해석

표면 아래 음력분포를 구하는 절차는 다음과 같다. 우선, 탄성유체운동 해석을 통해 얻은 표면 접촉압력분포로부터 극한된 분포하중을 적용하는 사각조각 표면들로 이산화한다. 하중이 작용하는 반 무한체 표면을 미소 사각요소로 나누어, 각 미소요소의 극한된 수직하중을 그 요소의 중심에 작용하는 미소 접촉하중으로 동가시킨다. 각 미소 사각표면에 작용하는 접촉응력에 의한 반 무한 탄성체내의 임의의 점에서의 음력분포를 Love\(^{12} \)와 Cho 등\(^{13} \)의 변위해를 통해 계산하여 각 미소 사각요소들이 반 무한체내의 임의의 점의 경우를 이루는 영향을 중첩함으로서 반 무한체내의 임의의 점에서의 음력을 근사적으로 구할 수 있다. 미소요소의 크기가 작을수록 정확해지며 수렴한다.

2.5 고추기 피로모델

2.5.1 임계평면법

임계평면법은 균열이 시작되는 임계면을 정의하여 그에 대한 음력과 변형률 정보를 이용하여 피로를 판단하는 방법으로 Matak\(e \) 조건이 대표적이다. Matak\(e \) 조건은 임계평면에 작용하는 전단 음력의 진폭 \(C_a \)와 최대 수직응력 \(N_{max} \)의 선형 조합으로 구성되어 있는데 이 조건에서는 전단 음력의 진폭이 최대가 되는 문을 임계평면으로 정의 한다.

\[(\phi^*, \theta^*) : \text{Max} \{ C_a(\phi, \theta) \} \]
(24)

여기서, \((\phi^*, \theta^*) \)는 임계 평면에 해당하는 \((\phi, \theta) \) 값을 나타낸다. 피로 조건은 다음과 같다.

\[C_a(\phi^*, \theta^*) + \kappa N_{max}(\phi^*, \theta^*) \leq \lambda \]
(25)

여기서, \(\kappa \)와 \(\lambda \)의 값들은 식 (2)를 순수 완전 반복 비틀림의 경우와 완전 반복 굴림의 경우에 적용함으로써 구할 수 있다.

\[\kappa = \left(\frac{2r_4}{f_{s4}} \right) - 1, \lambda = t_{s4} \]
(26)

식 (2)를 만족하게 되면 균열이 발생하지 않게 되고 만족하지 않게 되면 균열이 발생하여 무한수명이 되지 않게 된다.

2.5.2 음력 불변량법

음력 불변량을 이용한 피로 조건은 정수압 음력과 편차음력의 이차 불변량을 사용하여 표현된다. 지금까지 제안된 음력 불변량법 중 Crossland\(^{19} \)가 제안한 피로조건 식은 \(J_2 \)의 진폭과 정수압 음력 \(\sigma_{H,max} \)의 최대값으로 구성되어 다음과 같다.

\[\sqrt{J_{2,a}} + \kappa \sigma_{H,max} \leq \lambda \]
(27)

여기서, \(\kappa \)와 \(\lambda \)는 다음과 같다.

\[\kappa = \frac{3f_{s4} - \sqrt{3}}{f_{s4}}, \lambda = t_{s4} \]
(28)
2.5.3 Mesoscopic 법

금속의 피로 거동은 미시적(microscopic) 영역 즉 전위(dislocation) 영역에서 분석될 수 있다. Meso 영역은 미시적 영역과 거시적 영역의 중간 범위의 것으로 금속의 결정, 구조의 영역에 해당된다. Mesoscopic 접근법은 Dang Van20에 의해 소개되었으며 다음과 같다.

\begin{align}
 f'(\sigma) = \tau' \pm \kappa \sigma H \tau = 0 \tag{29} \\
 \max \{\tau'(\sigma) + \kappa \sigma H(\tau)\} < \lambda \tag{30}
\end{align}

여기서, \(\tau'(\sigma)\)와 \(\sigma H(\tau)\)는 각각 meso 영역의 Tresca 전단응력과 구멍압 응력을 나타내며, \(\kappa\)와 \(\lambda\)는 다음과 같이 표현된다.

\[\kappa = \frac{t_{2} - f_{2}}{f_{3}}, \quad \lambda = t_{2} \tag{31} \]

3. 해석조건

본 연구의 해석대상으로 삼은 것은 현재 양산 중인 6209 볼 베어링으로 그 주요치수와 물성치는 Table 1에 제시한 바와 같다.

<table>
<thead>
<tr>
<th>Table 1 Material properties and geometry of 6209 bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Material properties</td>
</tr>
<tr>
<td>AISI 52100</td>
</tr>
<tr>
<td>Geometry</td>
</tr>
<tr>
<td>Number of balls</td>
</tr>
<tr>
<td>Pitch circle diameter</td>
</tr>
<tr>
<td>Initial diametral clearance</td>
</tr>
<tr>
<td>Outer raceway conformity ratio</td>
</tr>
</tbody>
</table>

응력유는 Hertz 접촉 타원의 단축방향으로 유입된다며 가장하였다. 응력계는 20\degreeC에서 41C의 점도를 갖는 광료로서 밀도는 861.6kg/m3, 점도-압력 계수는 22 GPa1, 점도-압력 지수 0.71로 적용하였 다. 그리고 계산 전과정에 걸쳐 순수 구름운동을 가정하여 마찰계수는 0으로 두었다. 순수 구름 시 볼 베어링의 운활 영역으로 유입되는 운활유의 평균 속도(\(\bar{u}\))는 Hamrock21의 연구로부터 다음과 같이 가정하였다.

\[\bar{u} = \frac{\omega_i - \omega_o}{4d_m} \left(\frac{d^2 - d_b^2}{u^2} \right) \tag{32} \]

볼 베어링의 경우 볼과 내륜 및 볼과 외륜 각각의 동일한 전동체 하중을 받는다 하더라도 접촉 영역의 차이로 인해 표면에 작용하는 응력 역시 서로 다르고 응력을 받는 사이클의 형태도 다르기 때문에 내외륜 각각의 피로수명을 계산할 필요가 있다. Fig. 5는 볼 베어링의 외륜이 고정되어 있다 고 가정했을 때, 내륜과 외륜의 한 점에 작용하는 응력 사이클 주기를 도시한 것이다.

\[<\text{Inner raceway}> \]

\[<\text{Outer raceway}> \]

Fig. 5 Load cycle for a point in inner and outer raceway

고정된 외륜의 경우 동일한 크기의 최대 하중을 계속 받게 되며 측의 1 회전시 한 점을 지나는 볼의 수는 \((1 - d_b \cos \alpha / d_m) \cdot Z / 2\)이고 내륜의 임의의 한 점을 지나는 볼의 수는 \((1 + d_b \cos \alpha / d_m) \cdot Z / 2\)이지만 모든 볼에서 접촉이 발생하지 않으므로 베어링 시스템 해석을 통해 실제 접촉이 일어나는 볼 수(Z)를 고려하여 측의 1 회전 시 내륜의 한 점에 발생하는 응력의 수는 \((1 + d_b \cos \alpha / d_m) \cdot Z / 2\)로 계산할 수 있다. 그리고 내륜의 한 점은 동일한 하중을 받지 않고 그룹과 같이 포뮬란 형태의 변동 하중을 받게 되므로 다음과 같은 선형 누적
손상법칙(Palmgren-Miner rule)을 이용하여 계산할 수 있다.

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \cdots + \frac{n_k}{N_k} = \sum_{j=1}^{k} \frac{n_j}{N_j} = 1$$ \hspace{1cm} (33)

여기서, n_1, n_2, \ldots, n_k 는 특정 크기의 응력이 가해지는 사이클 수이며, N_1, N_2, \ldots, N_k 은 이들 응력 수준에서의 수명이다. 이때 피로수명은 각각의 수명비(life fraction)의 합이 1 이 될 때 발생한다.

4. 베테링강의 단축 피로시험

볼 베테링의 피로해석을 수행하기 위해서는 재료 파라미터 값이 요구된다. 따라서 본 연구에서는 bol 베테링에 가장 널리 사용되는 재료인 고탄소 크롬 베테링 강(AISI 52100)에 대하여 단축 인장-압축 및 비틀림 시험을 수행하였다. AISI 52100 강(62 HRc)의 열처리는 830°C에서 30 분간 구상화 여덟 링 처리를 한 후 150°C에서 오일 펌칭을 하고 530°C에서 40 분간 텁프링 처리를 하였다. AISI 52100 강에 대한화학적 조성표는 Table 2에 보인 바와 같다.

본 연구의 피로시험에서 사용한 시편은 ASTM 규정(E 8M-90a)에 따라졌다. 시편의 표면은 석식 후 연마공정을 거쳐 알루미나를 이용해 정면기공까지 수행하였다. 시험기는 MTS 사 2 축(axial-torsion) 피로시험기로 폐쇄 유압방식으로 방식이며 피로 시험은 하중체어로 수행하였다.

Fig. 6은 인장-압축 및 비틀림 시험 결과를 도시한 것이다. AISI 52100 강의 피로한도에 해당하는 수명은 10^8 사이클로서 인장 압축에 대한 피로한도는 733MPa이고 비틀럼에 대한 피로한도는 583MPa임을 알 수 있다.

<table>
<thead>
<tr>
<th>Table 2 Chemical composition of AISI 52100 steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element (Wt. %)</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>0.98-1.1</td>
</tr>
</tbody>
</table>
5.2 무윤활 상태의 접촉피로수명 결과

본 연구에서는 정립된 응력 기반의 피로수명 예측 기법을 이용하여 6209 베어링의 피로수명을 예측한 결과를 보이고 기존의 전통적인 L-P 이론에 의한 전동체 하중 기반의 수명 예측기법과 그 결과를 비교하였다. L-P 이론의 \(L_{50} \) 수명과 비교하기 위해서는 단축 피로 시험 결과의 통계적 처리를 통해 90% 신뢰도를 가질 수 있는 재료 파라미터의 상한과 하한을 정의하여 피로 판정식에 적용하여 야 하나, 본 연구에서는 단지 단축 피로 시험 결과의 키드피팅식만을 적용하였다. 따라서 본 연구의 블 베어링 예측수명은 약 50%의 신뢰도를 가지고 있다고 볼 수 있으며 비교 대상으로 L-P 이론의 \(L_{50} \) 수명과 비교하는 것이 타당하다.

Fig. 8은 축방향 하중이 1kN 이고 반경방향 하중이 증가할 때 베어링 하중해석을 통해 얻은 각 각의 전동체 하중으로부터 접촉해석을 수행한 결과를 도시한 것이다. 불과 외륜은 축방향과 반경 방향 모두 conformal 접촉을 하나 불과 내륜은 반경방향으로 non-conformal 접촉을 하기 때문에 동일한 전동체 하중이 작용하더라도 불과 내륜의 접촉압력이 보다 높게 나타남을 확인할 수 있다.

Fig. 9와 Fig. 10은 반경방향의 하중이 증가할 때 세가지 피로 판정식 및 L-P 이론의 공학 내륜과 외륜의 접촉피로수명을 비교하여 도시한 것이다. 두 그래프에서 \(x \) 축은 축의 회전 수를 나타낸 것으로 AISI 52100 강의 재료 파라미터 값은 10\(^6\) 사이클까지 구했으나 축의 \(1 \) 회전당 불과 내·외륜 간의 접촉횟수를 고려하면 내륜의 경우 3.33×10\(^7\) 사이클에서, 외륜의 경우 2.73×10\(^7\) 사이클에서 두 한수명이 각각 표시된다.
두 그래프에서 보는 바와 같이 세 가지 피로
판정식에 의한 피로수명의 결과는 내외를 모두에
서 L-P 이론식에 의한 수명에 비해 낮게 평가되고
있음을 알 수 있다. Crossland 조건이 2~3 배 정도의
차이로 가장 근접하게 평가하는 것으로 나타났으
며 Matakе 조건은 10 배 이상 차이가 날을 확인할
수 있다. 그리고 L-P 이론과 마찬가지로 세가지 피
로 판정식 모두 의존의 수명이 의외로 높게 나타
남을 확인할 수 있다.

5.3 EHL 상태의 접촉피로수명 결과

Fig. 11에서 Fig. 14까지는 탄성유체운동 상태에
서의 피로저산 결과를 도시한 것이다. Fig. 11은 측
의 회전수 3600rpm 이고 측방향 하중 1kN, 반경방
향 하중 8kN 이 작용할 때 각각의 물과 내면에 작
용하는 탄성유체운동 압력을 3 차원적으로 도시한
것이다. 그림에서 알 수 있듯이 높은 하중을 받는
180°와 140°에 위치한 물과 내면에 발생하는 3 차
원적 유체압력은 거의 Hertz 압력과 구분이 안
될 정도로 유사하게 나타남을 알 수 있고 실제 최
대압력의 차이도 각각 10MPa 과 18MPa 로 큰 차
이가 없음을 알 수 있다. 그러나 비교적 낮은 하
중이 작용하는 100°에 위치한 물과 내면의 유체압
력은 축구부에 상당한 압력 스파이크가 발생함을
볼 수 있고 중앙부의 최대압력도 Hertz 압력에 비
해 62MPa 만큼 감소하여 상당한 차이가 남을 알
수 있다. 이러한 경향은 Fig. 12 와 압력 프로파일
을 통해 좀더 명확히 알 수 있다. 그리고 Fig. 12
의 180°의 압력 프로파일에서 압력 스파이크가 나
타나기 직전에 있었던 이완성 영역까지 불안정한 프로파일의 형상을 볼 수 있는데 이는 수차례 작성 격자수가 충분히 작기
때문에 발생한 것으로 사료된다. 실제로 본
연구에서 적용한 Newton Rapson 방법으로는 30Ga 이
상의 압력이 발생하는 경우의 결과를 얻지 못했으
며 만일 계산영역을 좀더 깊게 나-fw다시 30Ga 이
상의 경우도 계산할 수 있지만 엄청난 계산시간이
소요되는 문제점이 있다. 앞서 부품활 상태로 가
정한 물 빌딩 피로도시결과에서 Matakе 조건을
제외한 Crossland 조건과 Dang Van 조건에서는 모
두 30Ga 이상에서 피로한도에 해당하는 수명이
나타남을 확인하였기 때문에 본 연구에서는
Matakе 조건에 대해서만 탄성유체운동 상태를 고
려한 피로저산을 수행하였다.

Fig. 13 은 측의 회전속도 1800rpm 과 3600rpm
의 두 가지에 대하여 측방향 하중을 1kN 으로 일
정하게 가하고 반경방향의 하중을 증가시켰을 때
최대하중을 받는 180°에 위치한 물과 내면의 유체
압력 및 Hertz 압력의 변화를 도시한 것이다. 하중
이 증가함에 따라 접촉압력이 거의 선형적으로 증
가함과 아울러 측지 Hertz 압력과 최대 탄성유체
운동 압력의 차이가 감소하였음을 알 수 있다. 실제
측방향 하중 1kN 만 작용했을 경우(Prn=1.392GPa)
는 최대 Hertz 압력과 3600rpm 조건의 유체압력간
의 차이가 53MPa 로 상당한 차이가 있으나 반경
방향 하중 5kN (Prn=2.51GPa) 이상에서는 20MPa
이하로 큰 차이가 없음을 알 수 있다.

Fig. 14 는 Matakе 조건에서 측의 회전속도가
내열의 피로수명에 미치는 영향을 도시한 것이다.
보다 낮은 범위에서의 탄성유체운동 상태의 영향
을 알아보기 위하여 Fig. 6의 재료 파라미터 정보
Fig. 11 3D Pressure distribution between ball and inner raceway

Fig. 12 pressure profile between ball and inner raceway

Fig. 13 Variation of surface pressure in the EHL state as a function of radial load

Fig. 14 Effect of shaft speed on fatigue life of inner raceway (Matake)

들 10^9 사이클까지 커브 피팅 시켜 10^9 사이클을 피로한도에 해당하는 수명으로 정의하였고 따라서 측의 회전수로 3.33×10^6 사이클에서 입계 피로하중이 결정된다. 그러므로 보듯이 측의 회전속도가 내부의 피로수명에 미치는 영향은 크지 않음을 알 수 있으며 특히 5kN 이상에서는 거의 영향이 없을을 확인할 수 있다. 따라서 볼 베어링과 같은 높은 하중에서 작동되는 기계요소의 피로수명 예측시 접촉해석에 의한 피로해석만으로도 충분히 만족할만한 결과를 얻을 수 있음을 알 수 있다. 그러나 본 연구 결과는 표면 거칠기를 고려하지 않
은 매끈한 면에서만 그 타당성이 있으며 만약 표면 거칠기나 외부 이물질이 침투한 상태 또는 운도 등을 고려한다면 피로수명 및 그 발생형태는 현저히 달라질 것으로 사료된다.

6. 결론

본 연구에서는 응력기반 접촉 피로수명 예측 기법을 볼 베어링에 적용하여 볼 베어링의 피로수명을 예측하는 알고리즘을 개발하였다. 볼 베어링의 하중해석을 통한 전동체 하중 및 볼과 트랙의 접촉형상함수를 이용하여 초기 압력 값을 계산하였다. 이 값을 탄성유체학 해석, 표면아래 응력해석, 그리고 피로 해석 등의 일련의 시뮬레이션을 거쳐 접촉 피로수명 및 임계 접촉피로하중을 계산하는 알고리즘을 개발하였다. 축방향 하중, 반방향 하중, 그리고 탄성유체학 상태에서의 축의 회전속도가 내외측의 접촉피로수명을 예측하였으며, 기존의 전통적인 L-P 이론에 의한 전동체 하중 기반의 수명 예측기법과 그 결과를 비교하였다. 그 결과 다음과 같은 결론을 얻을 수 있었다.

(1) 볼 베어링의 피로해석에 필요한 AISI 52100 강의 단축 피로시험을 수행하여 피로한도에 해당하는 수준을 10^8 사이클로 정의하고 인장 압축에 대한 피로한도는 733MPa이고 비결림에 대한 피로한도는 583MPa임을 보였다.

(2) 볼 베어링의 반방향 하중에 대한 접촉피로해석 결과 볼과 내웃간의 접촉이 외측에 비해 접촉 면적이 작아 접촉압력이 높고 따라서 피로수명이 짧음을 확인하였다.

(3) L-P 이론의 L_{50} 수명과의 비교에서 반방향 하중에 대해서는 Crossland 피로 조건이, 축방향 하중에는 Dang Van 피로 조건이 L_{50} 수명에 근접함을 알 수 있었다.

(4) 볼 베어링의 탄성유체온활 상태를 고려한 접촉피로수명 예측 결과 최대 Hertz 압력 2.5GPa 이상에서는 Hertz 압력과 탄성유체온활 압력의 차이가 거의 나지 않아 실제 피로수명에 미치는 영향도 크지 않음을 알 수 있었다.

참고문헌