MULTIPLICITY RESULTS AND THE M-PAIRS OF TORUS-SHERE
VARIATIONAL LINKS OF THE STRONGLY INDEFINITE FUNCTIONAL

TACKSUN JUNG and Q-HEUNG CHOI

ABSTRACT. Let \(I \in C^{1,1} \) be a strongly indefinite functional defined on a Hilbert space \(H \). We investigate the number of the critical points of \(I \) when \(I \) satisfies two pairs of Torus-Sphere variational linking inequalities and when \(I \) satisfies \(m \) \((m \geq 2)\) pairs of Torus-Sphere variational linking inequalities. We show that \(I \) has at least four critical points when \(I \) satisfies two pairs of Torus-Sphere variational linking inequality with \((P.S.)^*_c\) condition. Moreover we show that \(I \) has at least \(2m \) critical points when \(I \) satisfies \(m \) \((m \geq 2)\) pairs of Torus-Sphere variational linking inequalities with \((P.S.)^*_c\) condition. We prove these results by use of Theorem 2.2 (Theorem 1.1 in [1]) and the critical point theory on the manifold with boundary.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let \(I \in C^{1,1} \) be a strongly indefinite functional defined on a Hilbert Space \(H \). In this paper, we investigate the number of the critical points of \(I \) when \(I \) satisfies \(m \) \((m \geq 2)\) pairs of Torus-Sphere variational linking inequalities and \((P.S.)^*_c\) condition, \(m \in \mathbb{N} \). We show that \(I \) has at least two critical points each when \(I \) satisfies each one pair of Torus-Sphere variational linking inequality and \((P.S.)^*_c\) condition. We prove these results by use of Theorem 2.2 and the critical point theory on the manifold with boundary. In the case that \(I \) is not strongly indefinite functional Marino, A., Micheletti, A.M., Pistoia, Schechter, M., Tintarev, K., and Rabinowitz, P., proved in Theorem (3.4) of [4], [7] and [8] a theorem of existence of two solutions when \(I \) satisfies one pair of Sphere-Torus variational linking inequality by the mountain pass theorem and degree theory. Marino, A., Micheletti, A.M. and Pistoia, A. proved in Theorem (8.4) of [5] a theorem of existence of three solutions when \(I \) satisfies two pairs of Sphere-Torus variational linking inequalities and \((P.S.)^*_c\) condition by the mountain pass theorem and degree theory. In this paper we obtain the following results for the strongly indefinite functional case:

Received by the editors November 10, 2008.

2000 Mathematics Subject Classification. 35A15.

Key words and phrases. Strongly indefinite functional, Torus-Sphere variational linking inequality, \((P.S.)^*_c\) condition, critical point theory, limit relative category.

† Corresponding author.
Theorem 1.1. (Two pairs of Torus-Sphere variational links) Let H be a Hilbert space with a norm $\| \cdot \|$, which is topological direct sum of the four subspaces X_0, X_1, X_2 and X_3. Let $I \in C^{1,1}(H, R)$ be a strongly indefinite functional. Assume that

1. $\dim X_i < \infty$, $i = 1, 2$;
2. There exist a small number $\rho > 0$, $r^{(1)} > 0$ and $R^{(1)}$ such that
 $$r^{(1)} < R^{(1)} \text{ and } \sup_{\Sigma_{r^{(1)}}(S_1(\rho), X_0)} I < \inf_{S_{r^{(1)}}(X_1 \oplus X_2 \oplus X_3)} I,$$

 where $S_1(\rho) = \{ u \in X_1 | \| u \| = \rho \}$;
3. There exist a small number $\rho > 0$, $r^{(2)} > 0$ and $R^{(2)} > 0$ such that
 $$r^{(2)} < R^{(2)} \text{ and } \sup_{\Sigma_{r^{(2)}}(S_2(\rho), X_0 \oplus X_1)} I < \inf_{S_{r^{(2)}}(X_2 \oplus X_3)} I,$$

 where
 $$S_{r^{(2)}}(X_2 \oplus X_3) = \{ u \in X_2 \oplus X_3 | \| u \| = r^{(2)} \},$$
 $$\Sigma_{r^{(2)}}(S_2(\rho), X_0 \oplus X_1) = \{ u = u_0 + u_1 + u_2 | u_2 \in S_2(\rho), u_0 \in X_0, u_1 \in X_1, \| u_2 \| = \rho, 1 \leq \| u_0 + u_1 \| \leq R^{(2)} \};$$
4. $R^{(2)} < R^{(1)} \Rightarrow \Delta^{(2)}(S_2(\rho), X_0 \oplus X_1) \subset \Sigma_{r^{(1)}}(S_1(\rho), X_0)$;
5. $\beta^{(1)} = \sup_{\Delta_{r^{(1)}}(S_1(\rho), X_0)} I < +\infty$, where
 $$\Delta_{r^{(1)}}(S_1(\rho), X_0) = \{ u = u_0 + u_1 | u_1 \in S_1(\rho), u_0 \in X_0, \| u_1 \| = \rho, 1 \leq \| u_0 + u_1 \| \leq R^{(1)} \};$$
6. (P.S.) condition holds for any $c \in [\alpha^{(1)}, \beta^{(1)}]$, where
 $$\alpha^{(1)} = \inf_{S_{r^{(2)}}(X_2 \oplus X_3)} I;$$
7. There exists one critical point e in $X_0 \oplus X_3$ with $I(e) < \alpha^{(1)}$. Then there exist at least four distinct critical points except e, u_j^1, $j = 1, 2$, in X_1, u_j^2, $j = 1, 2$ in X_2, of I with
 $$\alpha^{(1)} = \inf_{S_{r^{(2)}}(X_2 \oplus X_3)} I \leq I(u_j^2) \leq \sup_{\Delta_{r^{(2)}}(S_2(\rho), X_0 \oplus X_1)} I \leq \sup_{\Sigma_{r^{(1)}}(S_1(\rho), X_0)} I < \inf_{S_{r^{(1)}}(X_1 \oplus X_2 \oplus X_3)} I \leq I(u_j^1) \leq \sup_{\Delta_{r^{(1)}}(S_1(\rho), X_0)} I = \beta^{(1)} < +\infty.$$
Theorem 1.2. (m pairs of Torus-Sphere variational links) Let H be a Hilbert space with a norm $\| \cdot \|$, which is a topological direct sum of the $m + 2$ subspaces X_0, X_1, \cdots, X_m and X_{m+1}. Let $I \in C^{1,1}(H, R)$ be a strongly indefinite functional. Assume that

1. $\dim(X_i) < \infty$, $i = 1, \cdots, m$;
2. There exist a small number $\rho > 0$, $r(k) > 0$ and $R(k) > 0$ such that
 $$r(k) < R(k)$$
 and
 $$\sup_{\Sigma_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1})} I < \inf_{S_r(k)(X_k \oplus \cdots \oplus X_{m+1})} I,$$
3. $R(k) < R(k-1) \Rightarrow$
 $$\Delta_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1}) \subset \Sigma_{R(k-1)}(S_{k-1}(\rho), X_0 \oplus \cdots \oplus X_{k-2}),$$
4. $\beta^{(m)} = \sup_{\Delta_{R(1)}(S_1(\rho), X_0)} I < +\infty$;
5. $(P.S.)^c_\alpha$ condition holds for any $c \in [\alpha^{(m)}, \beta^{(m)}]$, where
 $$\alpha^{(m)} = \inf_{S^{(m)}(X_{m+1})} I;$$
6. There exists one critical points e in $X_0 \oplus X_{m+1}$ with $I(e) < \alpha^{(m)}$.

Then there exist at least $2m$ distinct critical points except $e, u^k_j, j = 1, 2, \text{ in } X_k, 1 \leq k \leq m$, of I with

$$\alpha^{(m)} = \inf_{S^{(m)}(X_{m+1})} I \leq I(u^1_j) \leq \sup_{\Sigma_{R(m-1)}(S_{m-1}(\rho), X_0 \oplus \cdots \oplus X_{m-2})} I \leq \cdots \leq \sup_{\Sigma_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1})} I \leq \inf_{S^{(k)}(X_k \oplus \cdots \oplus X_{m+1})} I \leq I(u^k_j) \leq \sup_{\Sigma_{R(k-1)}(S_{k-1}(\rho), X_0 \oplus \cdots \oplus X_{k-2})} I \leq \cdots \leq \inf_{S^{(1)}(X_1 \oplus \cdots \oplus X_{m+1})} I \leq I(u^1_j) \leq \sup_{\Delta_{R(1)}(S_1(\rho), X_0)} I = \beta^{(m)}.$$

For the proofs of the main results we use Theorem 2.2 and the critical point theory on the manifold with boundary. Since the functional I is strongly indefinite functional, it is convenient to use the notion of the limit relative category instead of the relative category and the $(P.S.)^c_\alpha$ condition which is a suitable version of the Palais-Smale condition. We restrict the functional I to the manifold C_k with boundary, where C_k is introduced in section 4. We study the geometry and topology of the sub-levels of I and I_k and investigate the limit relative category of the
sub-level sets of \tilde{I}_k and $(P.S.)^*_c$ condition in C_k. By Theorem 2.2 and the critical point theory on the manifold with boundary, we obtain at least two distinct critical points of \tilde{I}_k, in each linked subspace $X_k, k = 1, \ldots, m$. So we obtain at least two distinct critical points of I, in each linked subspace $X_k, k = 1, \ldots, m$.

2. CRITICAL POINT THEORY ON THE MANIFOLD WITH BOUNDARY

Now, we consider the critical point theory on the manifold with boundary. Let H be a Hilbert space and M be the closure of an open subset of H such that M can be endowed with the structure of C^2 manifold with boundary. Let $f : W \to R$ be a $C^{1,1}$ functional, where W is an open set containing M. For applying the usual topological methods of critical points theory we need a suitable notion of critical point for f on M. Since the functional $I(u)$ is strongly indefinite, the notion of the $(P.S.)^*_c$ condition and the limit relative category (see [2]) is a useful tool for the proof of the main theorems.

Definition 2.1. If $u \in M$, the lower gradient of f on M at u is defined by

$$\text{grad}_M^L f(u) = \begin{cases} \nabla f(u) & \text{if } u \in \text{int}(M), \\ \nabla f(u) + \langle \nabla f(u), \nu(u) \rangle - \nu(u) & \text{if } u \in \partial M, \end{cases}$$ (2.1)

where we denote by $\nu(u)$ the unit normal vector to ∂M at the point u, pointing outwards. We say that u is a lower critical for f on M, if $\text{grad}_M^L f(u) = 0$.

Let $(H_n)_n$ be a sequence of closed finite dimensional subspace of H with $\dim H_n < +\infty$, $H_0 \subset H_{n+1}$, $\cup_{n \in N} H_n$ is dense in H.

Let $M_n = M \cap H_n$, for any n, be the closure of an open subset of H_n and has the structure of a C^2 manifold with boundary in H_n. We assume that for any n there exists a retraction $r_n : M \to M_n$. For given $B \subset H$, we will write $B_n = B \cap H_n$.

Definition 2.2. Let $c \in R$. We say that f satisfies the $(P.S.)^*_c$ condition with respect to $(M_n)_n$, on the manifold with boundary M, if for any sequence $(k_n)_n$ in N and any sequence $(u_n)_n$ in M such that $k_n \to \infty, \forall n, f(u_n) \to c, \text{grad}_{M_{k_n}} f(u_n) \to 0$, there exists a subsequence of $(u_n)_n$ which converges to a point $u \in M$ such that $\text{grad}_M^L f(u) = 0$.

Let Y be a closed subspace of M.

Definition 2.3. Let B be a closed subset of M with $Y \subset B$. We define the relative category $\text{cat}_{M,Y}(B)$ of B in (M,Y), as the least integer h such that there exist $h + 1$ closed subsets U_0, U_1, \ldots, U_h with the following properties:

- $B \subset U_0 \cup U_1 \cup \ldots \cup U_h$,
- U_0, \ldots, U_h are contractible in M;
- $Y \subset U_0$ and there exists a continuous map $F : U_0 \times [0, 1] \to M$ such that

 $$F(x, 0) = x \quad \forall x \in U_0,$$
 $$F(x, t) \in Y \quad \forall x \in Y, \forall t \in [0, 1],$$
 $$F(x, 1) \in Y \quad \forall x \in U_0.$$

If such an h does not exist, we say that $\text{cat}_{M,Y}(B) = +\infty$.

Definition 2.4. Let \((X, Y)\) be a topological pair and \((X_n)_n\) be a sequence of subsets of \(X\). For any subset \(B\) of \(X\) we define the limit relative category of \(B\) in \((X, Y)\), with respect to \((X_n)_n\), by

\[
\text{cat}^\ast_{(X, Y)}(B) = \lim_{n \to \infty} \sup_{i} \text{cat}_{(X_n, Y_n)}(B_n).
\]

Let \(Y\) be a fixed subset of \(M\). We set

\[
B_i = \{B \subset M| \text{cat}^\ast_{(M, Y)}(B) \geq i\},
\]

\[
c_i = \inf_{B \in B_i} \sup_{x \in B} f(x).
\]

We have the following multiplicity theorem, which was proved in [6].

Theorem 2.1. Let \(i \in N\) and assume that

1. \(c_i < +\infty\),
2. \(\sup_{x \in Y} f(x) < c_i\),
3. the \((P.S.)_c^\ast\) condition with respect to \((M_n)_n\) holds.

Then there exists a lower critical point \(x\) such that \(f(x) = c_i\). If

\[
c_i = c_{i+1} = \ldots = c_{i+k-1} = c,
\]

then

\[
\text{cat}_M(\{x \in M| f(x) = c, \text{grad}_M f(x) = 0\}) \geq k.
\]

Jung and Choi [1] prove the following theorem which will be used to prove the main results:

Theorem 2.2. (One pair of Torus-Sphere variational link) Let \(H\) be a Hilbert space with a norm \(\| \cdot \|\), which is topological direct sum of the three subspaces \(X_0, X_1\) and \(X_2\). Let \(I \in C^{1,1}(H, R)\) be a strongly indefinite functional. Assume that

1. \(\dim X_1 < +\infty\);
2. There exist a small number \(\rho > 0, r > 0\) and \(R > 0\) such that \(r < R\) and

\[
\sup_{\Sigma_R(S_1(\rho), X_0)} I < \inf_{S_r(X_1 \oplus X_2)} I,
\]

where

\[
S_1(\rho) = \{u \in X_1| \|u\| = \rho\},
\]

\[
S_r(X_1 \oplus X_2) = \{u \in X_1 \oplus X_2| \|u\| = r\},
\]

\[
B_r(X_1 \oplus X_2) = \{u \in X_1 \oplus X_2| \|u\| \leq r\},
\]

\[
\Sigma_R(S_1(\rho), X_0) = \{u = u_1 + u_2| u_1 \in S_1(\rho), u_2 \in X_0, \|u_1\| = \rho, 1 \leq \|u_1 + u_2\| = R\} \cup \{u = u_1 + u_2| u_1 \in S_1(\rho), \|u_1\| = \rho, 1 \leq \|u_1\| \leq R\},
\]

\[
\Delta_R(S_1(\rho), X_0) = \{u = u_1 + u_2| u_1 \in S_1(\rho), u_2 \in X_0, \|u_1\| = \rho, 1 \leq \|u_1 + u_2\| \leq R\};
\]

3. \(\beta = \sup_{\Delta_R(S_1(\rho), X_0)} I < +\infty\).
(4) $(P.S.)_\alpha$ condition holds for any $c \in [\alpha, \beta]$ where
\[\alpha = \inf_{S_r(X_1 \oplus X_2)} I; \]

(5) There exists one critical point c in $X_0 \oplus X_2$ with $I(c) < \alpha$. Then there exist at least two distinct critical points except c, u_i, $i = 1, 2$, in X_1, of I with
\[\inf_{S_r(X_1 \oplus X_2)} I \leq I(u_i) \leq \sup_{\Delta_R(S_1(\rho), X_0)} I. \]

3. PROOF OF THEOREM 1.1

We will apply Theorem 2.2 to the case when H is the topological direct sum of $X_0 \oplus X_1$, X_2 and X_3 and to the case when H is the topological direct sum of X_0, X_1 and $X_2 \oplus X_3$. By the conditions (1), (2), (3), (4), we have that
\[\alpha^{(1)} = \inf_{S_{r(2)}(X_2 \oplus \cdots \oplus X_m)} I \leq \sup_{\Delta_R(S_2(\rho), X_0 \oplus X_1)} I \leq \sup_{\Delta_R(S_{r(1)}(S_1(\rho), X_0))} I \]
\[\alpha^{(2)} = \inf_{S_{r(1)}(X_1 \oplus \cdots \oplus X_m)} I \leq \sup_{\Delta_R(S_1(\rho), X_0)} I. \]

The condition (6) implies that I satisfies $(P.S.)_\alpha$ condition for any c with
\[\inf_{S_{r(1)}(X_1 \oplus \cdots \oplus X_m)} I \leq c \leq \sup_{\Delta_R(S_{r(1)}(S_1(\rho), X_0))} I. \]

and I also satisfies $(P.S.)_\gamma$ condition for any γ with
\[\inf_{S_{r(2)}(X_2 \oplus \cdots \oplus X_m)} I \leq \gamma \leq \sup_{\Delta_R(S_2(\rho), X_0 \oplus X_1)} I. \]

By the condition (5),
\[\sup_{\Delta_R(S_1(\rho), X_0)} I = \beta < +\infty. \]

Now, we apply Theorem 2.2 to the case when H is the topological direct sum of X_0, X_1 and $X_2 \oplus X_3$. In this case we set the smooth manifold $C^{(1)} = \{ u \in H | \|P_{X_1} u\| \geq 1 \}$.

$\psi^{(1)} : H \backslash (X_0 \oplus (X_2 \oplus X_3)) \to H$ by
\[\psi^{(1)}(u) = u - \frac{P_{X_1} u}{\|P_{X_1} u\|} = P_{X_0 \oplus (X_2 \oplus X_3)} u + \left(1 - \frac{1}{\|P_{X_1} u\|} \right) P_{X_1} u \]

and $I_1 = I \cdot \psi^{(1)} \in C^{1,1}_{loc}(C^{(1)}, H)$. Then by Theorem 2.2 with the conditions (1), (2), (4), (5), (7) and (3.2), I has at least two critical points u_j^1, $j = 1, 2$, in X_1, except c, with
\[\inf_{S_{r(1)}(X_1 \oplus \cdots \oplus X_m)} I \leq I(u_j^1) \leq \sup_{\Delta_R(S_1(\rho), X_0)} I. \]
Next we apply Theorem 2.2 once more to the case when \(H \) is the topological direct sum of \(X_0 \oplus X_1, X_2 \) and \(X_3 \). In this case we set the smooth manifold
\[
C^{(2)} = \{ u \in H \mid \|P_{X_2}u\| \geq 1 \},
\]
\[\psi^{(2)} : H \setminus \{(X_0 \oplus X_1) \oplus X_3\} \to H \]
by
\[
\psi^{(2)}(u) = u - \frac{P_{X_2}u}{\|P_{X_2}u\|} = P_{(X_0 \oplus X_1) \oplus X_3}u + \left(1 - \frac{1}{\|P_{X_2}u\|}\right)P_{X_2}u
\]
and \(\tilde{I}_2 = I \cdot \psi^{(2)} \in C^{(2)}_{loc}(C^{(2)}, H) \). Then by Theorem 2.2 with the conditions (1), (3), (7), (3.3) and (3.4), I has at least two critical points, \(u_j^2 \), \(j = 1, 2 \), in \(X_2 \), except \(e \), with
\[
\inf_{S_j^{(2)}(X_2 \oplus \cdots \oplus X_{m+1})} I \leq I(u_j^2) \leq \sup_{\Delta_{R^{(2)}}(S_2(X_0 \oplus X_1))} I.
\]
Using the condition (4), we can combine (3.5) with (3.6). Then we have
\[
\alpha^{(1)} = \inf_{S_j^{(2)}(X_2 \oplus \cdots \oplus X_{m+1})} I \leq I(u_j^2) \leq \sup_{\Delta_{R^{(2)}}(S_2(X_0 \oplus X_1))} I \leq \sup_{\Sigma R^{(1)}(S_1(X_0))} I = \beta^{(1)}.
\]
Thus I has at least four nontrivial distinct critical points except \(e \). So we prove the theorem.

4. PROOF OF THEOREM 1.2

We will apply Theorem 2.2 \(m \) times to the case when \(H \) is the topological direct sum of \(X_0 \oplus X_1 \oplus \cdots \oplus X_{k-1}, X_k, X_{k+1} \oplus \cdots \oplus X_{m+1} \), for each \(1 \leq k \leq m \). The conditions (1), (2) and (3) implies that
\[
\alpha^{(m)} = \inf_{S_j^{(m)}(X_m \oplus X_{m+1})} I \leq \sup_{\Delta_{R^{(m)}}(S_m(X_0 \oplus \cdots \oplus X_{m-2}))} I \leq \sup_{\Sigma R^{(m-1)}(S_{m-1}(X_0 \oplus \cdots \oplus X_{m-2}))} I \leq \sup_{\Delta_R^{(k)}(S_k(X_0 \oplus \cdots \oplus X_{k-1}))} I \leq \sup_{\Sigma R^{(k-1)}(S_{k-1}(X_0 \oplus \cdots \oplus X_{k-2}))} I \leq \sup_{\Delta_R^{(1)}(S_1(X_0))} I \leq \sup_{\Sigma R^{(1)}(S_1(X_0))} I \leq \inf_{S_j^{(1)}(X_1 \oplus \cdots \oplus X_{m+1})} I \leq \sup_{\Delta_R^{(1)}(S_1(X_0))} I = \beta^{(m)}.
\]
The condition (5) implies that I satisfies $(P.S.)^{(k)}_{c^{(k)}}$ condition for any $c^{(k)}$ with
\[\inf_{S_{c^{(k)}}(X_k \oplus \cdots \oplus X_{m+1})} I \leq c^{(k)} \leq \sup_{\Delta_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1})} I, \quad k = 1, \ldots, m. \quad (4.2) \]
By the condition (4),
\[\sup_{\Delta_{R(1)}(S_1(\rho), X_0)} I = \beta^{(m)} < +\infty, \quad (4.3) \]
We apply Theorem 2.2 to the case when H is the topological direct sum of $X_0 \oplus X_1 \oplus \cdots \oplus X_{k-1}$, X_k, $X_{k+1} \oplus \cdots \oplus X_{m+1}$, $k = 1, \ldots, m$. In this case we set
\[C^{(k)} = \{ u \in H | \|P_{X_k}u\| \geq 1 \}, \quad k = 1, \ldots, m. \]
$\psi^{(k)} : H \setminus \{(X_0 \oplus X_1 \oplus \cdots \oplus X_{k-1}) \oplus (X_{k+1} \oplus \cdots \oplus X_{m+1})\} \to H$ by
\[\psi^{(k)}(u) = u - \frac{P_{X_k}u}{\|P_{X_k}u\|} = P_{(X_0 \oplus \cdots \oplus X_{k-1}) \oplus (X_{k+1} \oplus \cdots \oplus X_{m+1})}u + \left(1 - \frac{1}{\|P_{X_k}u\|}\right) P_{X_k}u, \]
$k = 1, \ldots, m$, and
\[\tilde{I}_k = I \cdot \psi^{(k)} \in C_{loc}^{1,1}(C^{(k)}, H), \quad k = 1, \ldots, m. \]
Then by Theorem 2.2 with the conditions (1), (2), (3), (5), (6), (4.2) and (4.3), I has at least two critical points u_j^k, $j = 1, 2$, in X_k, except e $k = 1, \ldots, m$ with
\[\inf_{S_{c^{(k)}}(X_k \oplus \cdots \oplus X_{m+1})} I \leq I(u_j^k) \leq \sup_{\Delta_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1})} I \leq \sup_{\Sigma_{R(k-1)}(S_{k-1}(\rho), X_0 \oplus \cdots \oplus X_{k-2})} \inf_{S_{c^{(k)}}(X_{k-1} \oplus \cdots \oplus X_{m+1})} I. \quad (4.4) \]
Using the condition (3), we can combine (4.4) for all $k = 1, \ldots, m$. So we have
\[\alpha^{(m)} = \inf_{S_{c^{(m)}}(X_m \oplus X_{m+1})} I \leq I(u_j^m) \leq \sup_{\Delta_{R(m)}(S_m(\rho), X_0 \oplus \cdots \oplus X_{m-1})} I \leq \sup_{\Sigma_{R(m-1)}(S_{m-1}(\rho), X_0 \oplus \cdots \oplus X_{m-2})} \inf_{S_{c^{(m)}}(X_{m-1} \oplus \cdots \oplus X_{m+1})} I \leq \sup_{\Delta_{R(k)}(S_k(\rho), X_0 \oplus \cdots \oplus X_{k-1})} I \leq \sup_{\Sigma_{R(k-1)}(S_{k-1}(\rho), X_0 \oplus \cdots \oplus X_{k-2})} \inf_{S_{c^{(k)}}(X_{k-1} \oplus \cdots \oplus X_{m+1})} I \leq \sup_{\Sigma_{R(1)}(S_1(\rho), X_0)} I \leq \inf_{S_{c^{(1)}}(X_1 \oplus \cdots \oplus X_{m+1})} I \leq I(u_j^1) \leq \sup_{\Delta_{R(1)}(S_1(\rho), X_0)} I = \beta^{(m)}. \]
Thus I has at least $2m$ distinct critical points except e. Thus we prove the theorem.
References

[1] T. Jung and Q. H. Choi, The number of the critical points of the strongly indefinite functional with one pair of the Torus-Sphere variational linking sublevels, To be appeared in Korean J. Math..

