Effects of Fillers on Fatigue Crack Growth Rate of Ethylene Propylene Diene Monomer

Chang Kook Hong, Jae Yeon Jung, Dong Lyun Cho, and Shinyoung Kaang
School of Applied Chemical Engineering, Chonnam National University,
300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
(Received January 29, 2008; Accepted February 21, 2008)

Abstract: Crack growth characteristics of elastomeric materials are an important factor determining the strength and durability. In this study, the fatigue crack growth characteristic of filled EPDM compounds with different reinforcing fillers, such as silica and carbon black, was investigated using a newly designed tester. Frequency and test temperature had significant effects on the fatigue crack growth. The crack growth rate decreased with increasing frequency and the rate increased with increasing temperature. A power law relationship between the tearing energy and crack growth was observed for filled EPDM compounds. The crack growth rate reduced with increasing filler contents. Silica filled EPDM showed a better fatigue resistance than carbon black filled EPDM. The crack growth rate of silica filled EPDM decreased up to 30 phr and increased again at 50 phr. The formation of microcute type pits was observed on the fatigue-failure surface of unfilled EPDM, and relatively coarse surface with randomly distributed tear lines was observed on the failure surface of silica filled EPDM.

Keywords: crack growth characteristics, EPDM, silica, carbon black, tearing energy.
열의 사격을 가시적으로 관찰할 수 있을 때까지 많은 시간이 경과하게 되며, 균열의 사각과 상성 사이의 구분이 필요하다. 또한 피로 균열 성장 특성은 균열의 사각이 아닌 특정한 부하 하여서 균열이 얼마나 백계 성장하는 것이 결정적인 문제이다. 그러므로 사관에 따라 균열이나 점탄을 형성해 줄이면서 자연적인 결과로 균열 사각성장에 대한 요소들을 측정하고 재현성을 높일 수 있다.2,3

대부분의 고무 제품들은 금속의 보상효과와 원이 절감 그리고 공정장상을 위해 충전제와 함께 혼합하여 사용한다. 대표적인 충전제 실리카와 카본필름은 다양한 산업 분야에 이용되고 있으며, 양상 강도, 내마모성, 경도 그리고 모플라스 등을 향상시키는 역할을 하는 것으로 알려져 있다.2,11 카본필름으로 충전된 고무 재료의 물성은 카본필름의 특성에 따라 유동성에 의존하며, 카본필름의 특성은 입자 사이즈 또는 비표면적이 입자 구조와 닮은 카본필름 단위의 기하학적 배치에 의해 결정된다.12 실리카는 최근 고무산업에 고무 보강제로서 가장 많이 사용되었다. 그 이유는 카본필름으로 충전된 고무 제품보다 더 낮은 호스테리시스가 있으므로 안정한 성형을 우수하고 밀도가 적다. 알려져 있으며, 또한 카본필름과 비교하여 다양한 색상의 고무 제품을 만들 수 있다는 장점이 있다.10 그러나, 실리카의 경우 실리나이시 (Si-OH)를 통해 소수결합이 되어 가스와 잘 섞이지 않고 수용을 할 수 있는 성질과 실리카가 입자가 서로 융합하는 성질 때문에 낮은 분산성을 보이며,13 이를 해결하고 보강성과 강성의 향상을 위해 실리카를 사용하기도 한다. 본 연구에서는 실리카와 카본필름 충전재가 ethylene propylene diene monomer (EPDM)의 피로균열 성장특성에 미치는 영향을 고찰하였다. 또한 운동과 진동과 같은 측정조건이 충전재 EPDM의 피로수명에 미치는 영향에 대해 연구하였다. EPDM은 런던 내부성을 가지고 있어 자동차 타이어의 열간 재료, 자동차용 고무부품, 그리고 벨트 제조 등에 널리 사용되는 고무 재료이다.15

실험

제료. 이 실험의 고무 재료는 EPDM (Kumho polychem, KEP-7411)을 사용하였으며, 충전재로는 실리카 (Degussa, Urasil 7000 GR series)와 카본필름 (N330)을 사용하였다. 실리카가 충전된 EPDM의 경우 카본필름을 TESPT (Degussa)를 사용하여 배합하였으며 그 분량을 Figure 1에 나타내었다. 충전재는 각각 10, 30, 50 phr를 첨가하였고, 각 재료의 종류와 사양은 Table 1에 나타내었다.

시험작업. 시험 시각을 위해 사용된 배합 방법은 ISO 1795을 참조하였다. 배합 장비는 Banbury type의 miniature internal mixer (Nanyang Co. Inc., Korea)와 two-roll mill (C. W. Brabender Instruments, Inc., PM-300, Model #138-B)을 이용하였다.

![Figure 1. Chemical structure of bis(triethoxy silylpropyl) tetrasulfide (TESPT).](image)

Table 1. Formulation of Unfilled and Filled EPDM Compounds

<table>
<thead>
<tr>
<th>Materials</th>
<th>EPDM¹</th>
<th>ZnO</th>
<th>S</th>
<th>S/A²</th>
<th>TMTD³</th>
<th>MBT⁴</th>
<th>Silica⁵</th>
<th>TESPT (Si-69)⁶</th>
<th>Carbon black⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.00</td>
<td>5.00</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
<td>0.50</td>
<td>10/30/50</td>
<td>30/30/50</td>
<td>10/30/50</td>
</tr>
</tbody>
</table>

¹Part per hundred parts of rubber. 2. Kumho polychem KEP-7411. ML (1+4) @125°C: 245 MU. Ethylene: 52.4 w%, ENB: 4.6 w%. 3. Stearic Acid. 4. Tetramethylthiuram disulfide. 5. 2,2'-mercaptobenzoaziloxy. 6. Degussa Urasil-7000 GR. 7. Bis(triethoxy silylpropyl)polysulfide. 8. N330.

![Figure 2. Shape of a pure shear test piece for fatigue crack growth rate measurements.](image)

EPDM의 균열 합의 통합 상태를 이루는 two-roll mill을 이용하여 50°C에서 2분간 밀링 (milling) 작업을 하였으며 이 때 몫의 간격은 2.5 mm었다. 그 후, internal mixer를 이용하여 600 rpm에서 1초 배합하였다. EPDM을 두입하고 1분 후 ZnO, S, S/A, TMTD, MBT를 넣고 1분 배합하였다. 마지막으로 실리카와 TESPT을 카본필름을 넣고 2분간 배합하였다. 2차 배합은 two-roll mill을 이용하여 50°C에서 배합하였다. 먼저 몫의 간격은 2.5 mm로 조정한 다음 3/4 간격을 4회 반복하였다. 그 다음 몫의 간격을 1 mm로 조정한 다음 end-wise를 총 2회 실행하여 배합을 완료하였다. 배합된 EPDM의 가로 특성값은 oscillatory disk rheometer (Benzol, Model #674)를 이용하였으며 가로시간은 160°C에서 최대 토크 (torque)로부터 결정하였다. 시험은 가로 프레스 (Ijake, model #4-15-251)를 이용하여 압축 성형하였으며, 시험에 따라 크기는 Figure 2에 나타내었다. 시험은 순수 전단 시험 형태로 모서리 영향을 최소화하기 위해 시연의 간격에 대한 두께의 비가 (L/b) 10으로 제작되었으며, 허리테스의 최적 측정을 최소화하기 위하여 가능한 최대 (2 mm) 제작되었다.

측정장치. 본 연구에서 사용한 고무 재료의 피로균열 성장 측정 장치는 Figure 3에 나타내었다. 고무재료 현장에서 주로 사용하고 있는 피로수명 실험은 단단한 파리에 달해도 누적된 변형주기를 계산한다. 이 방법은 고무의 피로수명에 영향을 미치는 요소에 따라 피로장학 특성을 측정하는데 한계가 있다. 이러한 한계를 극복하고 고무재료의 피로균열 성장속도를 변형 (strain) 크기에 따른 이 앞에서의 함수로 해석함으로써 고유 피로균열 가동을 보다 명확히

Polymer (Korea), Vol. 32, No. 3, 2008
여기서 L는 순수판단 영역의 변형 에너지밀도를 의미하며, h_0는 침면의 초기 높이이다. 본 연구에서 변형 에너지밀도(ΔE)는 에너지밀도를 한 시점과 동일한 변형조건에서 에너지밀도가 아닌 순수판단 시면을 사용하여, 응력(σ)-변형(ε) 곡선의 허무 면적로부터 측정하였다. 침면의 변형률이 증가함수 변형 에너지밀도는 증가한다.10) 진동수에 있어서는 최대에너지밀도를 최소화하기 위해 변형 에너지밀도를 보정 목록변량의 변형 곡선의 중점으로부터 얻는다. 실리카와 카본흑색으로 측정된 EPDM 시편의 안정성에 대한 타이어를 Table 2에 나타내었다. 측정조건은 변형 20% 그리고 운도는 60 °C였다. 본 실험에서 사용된 10개의 속도를 향상한 대형 태양 내에서 진동실의 작용을 증가한 진동실에서 실시하였다. 이러한 증가는 실리카와 카본흑색의 보강효과에 의한 것으로 해석된다. 진동 실시 보강효과는 진동실의 파동, 파동적 체도, 진동실-진동실 또는 고유와 진동실 사이의 상호작용 등으로 인하여 고유 체도의 안정성 및 가속도 증가에 영향을 미친다.17) 또한, 실험치가 측정된 EPDM의 안정성에 증가한 카본흑색이 측정된 EPDM에 비해 있으며, 이는 실판의 허무변도로 사용된 TESPT가 실리카 표면의 실리닐기 반응이 반응 후에 고무회수와 실리카 사이의 화학적 분리 상호작용을 증가 시켰기 때문에 해석된다.19)

실험 조건에 따른 군열성장 상승속도에 미치는 영향의 차별도를 발견하기 위하여 실리카가 30 phr 측정된 EPDM 시편을 이용하여 20% 변형에서 군열성장속도를 측정하였다. 최고군열성장은 고유 액체만큼 아니라 운도가 인장수 손실인자에 의해 안정성에 미치는 영향을 받는다는 것을 알려져 있다. 단일 진동수의 성장은 과정간의 소실의 이해가 수 있습니다. 100 진동수의 항변성(Δα/Δα)가 전장된 군열성장도(Δα/Δα)를 구하려는 현 예를 Figure 4에 나타내었다. 나머지 실험은 20% 변형, 운도 60 °C, 그리고 진동수 1 Hz에서 진행되었으며, 예상한 허무조건을 이론의 한도 추정 증면에 약 30 mm의 에너지밀도를 비교 형성에 실험이하였다. 모든 실험조건에서 진동수(Δα/Δα과)의 과정 간의 어려움이 상정된 상관관계를 나타내었으며, 각각의 기기로부터 군열성장도(Δα/Δα)를 구하였다.

실리카가 30 phr 측정된 EPDM 시편의 군열성장속도에 미치는 진동수와 운도의 영향을 Figure 5에 나타내었다. 진동수는 1 Hz에서 10 Hz까지 변화를 주었고, 운도는 40 °C에서 120 °C까지 변화를 주어 실험을 진행하였다. 실험에서 진동수의 변화는 단위시간에 에너지를 또는 변형량의 각 세명의 중심값을 보였다. 80 °C와 120 °C에서 진동수가 1 Hz에서 10 Hz로 증가함에 따라 군열성장속도는 약 3-5배 정도 감소하는 경향을 보였으며, 이는 변형 세명시각가 감소함에 따라 피로 강화가 증가함을 나타내었다. 그리고 40 °C에서 1 Hz에서 5 Hz까지는 감소하였으나 5 Hz 이상에서 진동수가 군열성장속도에 미치는 영향을 거의 없었다. 진동수

Table 2. Tearing Energy of the Unfilled and Filled EPDM Compounds at a Strain of 20% and Temperature of 60 °C

<table>
<thead>
<tr>
<th>Type</th>
<th>Tearing Energy (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 phr</td>
<td>472.4</td>
</tr>
<tr>
<td>10 phr</td>
<td>630.0</td>
</tr>
<tr>
<td>30 phr</td>
<td>1194.0</td>
</tr>
<tr>
<td>50 phr</td>
<td>2675.2</td>
</tr>
<tr>
<td>C/B</td>
<td>592.3</td>
</tr>
<tr>
<td></td>
<td>1105.9</td>
</tr>
<tr>
<td></td>
<td>2018.0</td>
</tr>
</tbody>
</table>
Figure 4. Determination of the crack growth rate \(\frac{dc}{dn} \) from the plot of crack growth \(c \) versus loading cycle \(n \) for 30 phr silica filled EPDM compound at a strain of 20%, frequency of 5 Hz, and temperature of 60°C.

\[
\frac{dc}{dn} = aG^b
\]

Figure 5. Effects of (a) frequency and (b) temperature on crack growth rates of 30 phr silica filled EPDM at a strain of 20%.

The hazard is due to the high content of rubber, which leads to crack growth under high stress. However, it is significant that the crack growth rate decreases as the temperature increases.

Therefore, the following equation is derived:

\[
\frac{dc}{dn} = aG^b
\]

where \(a \) and \(b \) are constants determined by the experimental data.

Polymer (Korea), Vol. 32, No. 3, 2008
가장으로 인해 안장 성질이 우수하다고 알려져 있다. 이는 실라카의 분산력을 향상시키고 고무사슬과 실라카 사이의 접착과 결합을 증가시키기 위해 사용된 실라카 염화물의 영향으로 보인다. 실라 카를 분산하는 실라카의 표면을 개발시키고 실라카와 고무 사이에 접착과 가교결합을 증가시키므로 고무재료의 강성을 높였다. 본 실험에서 실라 카에 염화물을 넣어 TESPT의 배합량은 실라카의 함량을 기준으로 정했으며, 실라카의 양이 증가함에 따라 TESPT의 양도 증가하였다. 카본블랙으로 채전된 고무의 경우 공급장수도가 미치는 영향은 입자가 크기에 의존한다고 알려져 있다. 채전제가 피로균열 특성에 미치는 영향은 여러 가지 메커니즘으로 해석될 수 있다. 채전제는 채전제에 의한 공급장수와 허스토리시스 특성의 현저한 변화, 동시에 고무-채전제 복합체의 물질전달에 의한 공급 총의 무차집, 균목, 갈라짐 등, 그리고 세 번째로 채전제 입자의 음직임으로 인한 영향 등을 포함한다.

Figure 6에서 기울기는 식 (2)의 지수에 해당하는 값으로 고무 재료의 피로균열 흡수량수인 β이다. 실라카와 카본블랙의 함량에 따른 β 값을 Table 3에 정리하였다. 채전되지 않은 EPDM에 비해 채전된 시험의 β가 큰 값을 보였으며, 실라카로 채전된 EPDM의 경우 β는 4.16에서 5.24 사이의 값을 보였고, 카본블랙으로 채전된 EPDM의 경우 4.12에서 5.85 사이의 값을 나타내었다. 특성상 수 β 값은 채전고무와 같은 결정성 고무의 경우 2이고 SBR와 같은 비결정성 고무의 경우 4를 나타낸다. 보통 채전된 고무의 경우 2-6 사이의 값을 가지며 이보다 유사한 고무의 종류에 의존하고 그 다음에 사용된 카본블랙의 음직임으로 인해 약간 차이가 있다. β 값이 커지는 경우 고무 재료는 동일한 양의 입력에너지 공급에 대해 보다 빠르게 공급장수를 증가한다는 것을 나타낸다.

Figure 7에 실라카 함량에 따른 EPDM의 공급장수의 값을 여러 가지 방법으로 측정하여 나타내었다. 실험조건은 오도 60℃ 그리고 진동수 5 Hz에서 진행되었다. 실라카로 채전된 EPDM의 공급장수는 30 phr까지 감소하다가 그 이후 증가하는 모습을 보였다. 30 phr 이상이 가장 낮은 공급장수로 채cka로 채전된 경우, 30 phr 이상의 경우와 비슷한 값을 나타내었다. 30 phr 이상의 경우와 비슷한 값을 나타내지만, 30 phr 이상의 경우와 비슷한 값을 나타내지 않는 것은 실라카와 TESPT에 의해 가해지는 무차질과 공급장수의 증가가 있기 때문으로 해석되며, 30 phr 이상의 경우와 비슷한 값을 나타내지 않는 것은 실라카와 TESPT에 의해 가해지는 무차질과 공급장수의 증가가 있기 때문으로 해석된다. 30 phr 이상의 경우와 비슷한 값을 나타내지 않는 것은 실라카와 TESPT에 의해 가해지는 무차질과 공급장수의 증가가 있기 때문으로 해석된다. 30 phr 이상의 경우와 비슷한 값을 나타내지 않는 것은 실라카와 TESPT에 의해 가해지는 무차질과 공급장수의 증가가 있기 때문으로 해석된다.

Table 3. Exponent β Values of Unfilled and Filled EPDM Specimens at Various Filler Contents

<table>
<thead>
<tr>
<th>Type</th>
<th>Exponent β Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 phr</td>
</tr>
<tr>
<td>Silica</td>
<td>4.13</td>
</tr>
<tr>
<td>C/B</td>
<td>4.12</td>
</tr>
</tbody>
</table>

Figure 6. Effect of filler contents on crack growth rates of (a) silica filled and (b) carbon black filled EPDM as a function of tearing energy.

Figure 7. Crack growth rates of silica filled EPDM compounds at various strains as a function of silica contents, tested at a frequency of 5 Hz and temperature of 60℃.
Figure 8. SEM photographs of the fatigue-failure surfaces of (a) unfilled and (b) 30 phr silica filled EPDM at a strain of 20%, frequency of 5 Hz and temperature of 60°C.

불이 증가함에 따라 금연성장속도가 증가함을 보이고 있으며, 변형률이 증가한다는 것은 금연성장속도가 증가하는 것을 의미한다.
충전된 고무 재료의 금연성장 특성을 이해하기 위해서 파로 파리단면을 관찰하는 것이 중요하다. 충전되지 않은 시리카가 30 phr 충전된 EPDM의 파로 파리단면을 SEM을 이용하여 관찰하고 Figure 8에 나타내었다. 충전되지 않은 시리카의 단면에서는 작고 유연성이 있어 보이는 작은 파리사태들의 관찰이 이루어진다. 이러한 단면은 얇은 인장강도와 인일강도를 나타냅니다. 스테인 30 phr 시리카가 충전된 EPDM의 파로 파리단면에서는 시리카와 고무 사이의 상호작용으로 인한 절착된 (bound) 고무문이 관찰되어, 이러한 결합고무들은 고무사슬과 시리카 사이의 접착과 결합 등의 상호작용에 기인한다. 또한, 충전된 폴리 사료의 보수효과로 인하여 인연성장이 불규칙적이고 비교적 가진 표면이 관찰된다. 충전체의 절차는 스테인드보상(stress dissipation)을 통한 추가적인 에너지흡수를 제공한다. 파로 파리단면 관찰으로서 알 수 있듯이, 시리카가 충전된 EPDM의 경우 보수효과로 인하여 파리파리에 대한 저항특성이 증가하면서 금연성장속도가 감소한 것으로 해석된다.

결론

본 연구에서는 자체 제작한 파로글립성장 측정기를 이용하여 충전체 중류에 따른 EPDM의 파로글립 성장특성을 고찰하였다. 시리카와 카본필름충전체의 장점이 중량할수록 증가된 인연에서의 증가하였다. 파로글립성장은 전동수와 온도 감에 증가본조에 영향을 받았으며 전동수가 증가함에 따라 금연성장속도가 감소하였고 온도가 증가함에 따라 금연성장속도는 증가하였다. 충전된 EPDM의 금연성장속도와 안전제을 연관관계를 미치는 영향