SECTIONAL ANALYTICITY IN SEQUENCE SPACES

T. BALASUBRAMANIANa, A. PANDIARANIb AND T. TAMIZH CHELVAMc

Abstract. The object of the present paper is to introduce Λ-dual and the concept of sectional analyticity (Abschinitta-analystique or AA property) of an FK-space. The motivation for AA-property is that a sequence space having AK-property possess AA-property.

1. Introduction

A sequence whose \(k \)-th term is \(x_k \) is denoted by \((x_k) \) or \(x \). Let \(\omega \) denote the set of all sequences. A sequence \(x \) is said to be an entire sequence if \(|x_k|^{1/k} \to 0 \) as \(k \to \infty \). The set \(\Gamma \) of all entire sequences is an FK space \([3]\) with seminorms \(q_i = \sup \left\{ \sum_{k=1}^{\infty} x_k z_k : |z| = i \right\} \) for \(i = 1, 2, \ldots \). A sequence \(x \) is said to be an analytic sequence if \((|x_k|^{1/k})\) is bounded. Let \(\Lambda \) denote the set of all analytic sequences.

For each positive integer \(k \), let \(\delta^k \) stands for the sequence \((0, 0, \ldots, 0, 1, 0, \ldots)\) with 1 in the \(k \)-th place and zeros elsewhere. A sequence space \(X \) is said to be an AK space if \(x^{[n]} \to x \) for each \(x \in X \) where \(x^{[n]} = (x_1, \ldots, x_n, 0, 0, \ldots) \). For a sequence space \(X \) its conjugate space is denoted by \(X' \).

Let \(X \) be any sequence space. Then \(X^\alpha \) is the Kothe-Toeplitz dual of \(X \) introduced in \([7]\), \(X^\beta \) is the space called the “g-dual” of \(X \) by Chillingworth in \([1]\) and the \(\beta \)-dual of \(X \) by Kothe and others \([8, p. 427]\). For arbitrary sequences \(X \) and \(Y \), \(X^\gamma \) is the space called \(X \to Y \) by Goes \([5, p. 137]\) and elsewhere. For \(Y = bs \) and arbitrary \(X \), \(X^\gamma \) corresponds to the \(\gamma \)-dual of \(X \) of Garling \([4]\) and others. Let \(X \) be an FK space containing \(\phi \). Then the \(f \)-dual denoted by \(X^f \) is defined by \([10]\) \[X^f = \{ [f(\delta^n)] : f \in X' \} \]. An FK space \(X \) is called an integral space \([2]\) if and only if \(\Gamma \subset X \). The work presented in this paper is motivated by the following questions. “Are all integral spaces \(A \)-perfect?” and “Are all AA-space having AK-property?”.
In the sequel the following sequence spaces are required.

\(\ell = \) the BK space of all sequences \((x_k)\) such that \(\sum_{k=1}^{\infty} |x_k|\) converges.

\(cs = \) the BK space of all sequences \((x_k)\) such that \(\sum_{k=1}^{\infty} x_k\) converges.

\(bs = \) the BK space of all sequences \((x_k)\) such that \(\sup_n \sum_{k=1}^{\infty} x_k < \infty\).

The rest of the paper is organized as follows:

In Section 2, we introduce the concepts of \(\Lambda\)-dual and \(\Lambda\)-perfect. We have also tried to find the \(\Lambda\)-dual and \(\Lambda\)-perfect space of \(X\) with \(\Gamma \subseteq X \subseteq \Lambda\).

In Section 3, we introduce the concept of sectional analyticity and try to find the relation between \(f\)-dual and \(\Lambda\)-dual.

2. ANALYTICAL DUAL OF A SEQUENCE SPACE \(X\)

Definition 2.1. Let \(X\) be an FK space. The \(\Lambda\)-dual of \(X\) (denoted by \(X^{\Lambda}\)) and may be called analytic dual of \(X\) is defined as \(X^{\Lambda} = \{x \in \omega : xu \in \Lambda \text{ for every } u \in X\} \).

Definition 2.2. An FK-space \(X\) is called a perfect space or a \(\Lambda\)-perfect space if \(X^{\Lambda\Lambda} = X\).

Remark 2.3. The definitions also hold when \(X\) is a singleton or a sequence space instead of an FK space.

Lemma 2.4. The \(\Lambda\)-dual of a sequence space has the following properties.

1. \(X^{\Lambda}\) is linear subspace of \(\omega\) for \(X \subset \omega\).
2. \(X \subset Y\) implies \(X^{\Lambda} \supset Y^{\Lambda}\) for every \(X, Y \subset \omega\).
3. \(X^{\Lambda\Lambda} = (X^{\Lambda})^{\Lambda} \supset X\) for every \(X \subset \omega\).

Lemma 2.5.

1. \(1^{\Lambda} = \Lambda\) where \(1 = (1,1,1,\ldots)\).
2. \(\emptyset^{\Lambda} = \omega\).
3. The \(\Lambda\)-dual of \(\chi\) = \(\{u \in \omega : [n!|u_n|]^{1/n} \to 0 \text{ as } n \to \infty\}\) is \(S_{\infty} = \{u \in \omega : (|u_n|/n!)^{1/n} \text{ is bounded}\}\) suppose if \(x \in S_{\infty}\) then \(|x_n u_n|^{1/n} \to 0\) as \(n \to \infty\) for all \(u \in X\). So the sequence \((|x_n u_n|^{1/n})\) is bounded and hence \(S_{\infty} \subset \chi^{\Lambda}\) on the other hand suppose \(x \notin S_{\infty}\). Then there exists an increasing sequence \(n_1 < n_2 < \cdots\) such that \(\left[\frac{|x_{n_k}|}{n_k!}\right]^{1/n_k} > k\).
Define \(u = (u_n) \) by
\[
u_n = \begin{cases}
\frac{1}{n!}, & \text{for } n = n_k \\
0, & \text{otherwise}
\end{cases}
\]
Then \(|n!|u_n|^{1/n} = \left[\frac{1}{(n!)^{n-1}} \right]^{1/n} = \frac{1}{(n-1)!} \left(\frac{n}{n_k} \right)^{1/n} \to 0 \) as \(n \to \infty \) thus \(u \) is an element of \(\chi \).

But \(|x_n u_k|^{1/n} = \left[\frac{|x_n|}{n_k} \right]^{1/n_k} > k \).

This contradicts the fact that \(x \in \chi^\Lambda \) and hence the \(\Lambda \)-dual of \(\chi \) is \(S_\infty \).

(iv) The \(\Lambda \)-dual of \(R = \{ x : (n!|x_n|) \text{ is bounded} \} \) is \(S_\infty \).

Now \(|x_k u_k| = \left[\frac{|x_k|}{k!} \right] k!|u_k| \leq ||u|| \left[\frac{|x_k|}{k!} \right], \ x = (x_k) \in S_\infty \). (9)

Therefore \((|x_k u_k|^{1/k}) \) is bounded and \(x \) is an element of \(R^\Lambda \). On the other hand if \(x \in R^\Lambda \) then \((|x_k u_k|^{1/k}) \) is bounded for all \(x \in R \).

Therefore \((||x_k|/k!|^{1/k}) \) is bounded for a particular \((1/k!) \in R \). Hence the \(\Lambda \)-dual of \(R \) is \(S_\infty \).

Theorem 2.6. Suppose \(\Gamma \subseteq X \subseteq \Lambda \). Then \(X^\Lambda = \Lambda \).

Proof. Step (i): We first claim that \(\Gamma^\Lambda = \Lambda \). If \(x \in \Lambda \) then \((|x_k|^{1/k}) \) is bounded. For any \(u \in \Gamma \) and \(x \in \Lambda \), \(u \cdot x \in \Lambda \) therefore \(x \in \Gamma^\Lambda \).

On the other hand suppose \(x \notin \Lambda \) then there would exist an increasing sequence of positive integers \(n_1 < n_2 < \ldots < n_k < \ldots \) such that \(|x_{n_k}|^{1/n_k} > p^{n_k} \) where \(p > 1 \) is an integer. Construct a sequence \(u = (u_n) \) as follows.
\[
u_n = \begin{cases}
k^n, & \text{if } n = n_k \ (k = 1, 2, \ldots) \\
0, & \text{otherwise}
\end{cases}
\]

Obviously \(u \in \Gamma \).

But \(|x_{n_k} u_{n_k}|^{1/n_k} > k \), so that \((|x_n u_n|^{1/n}) \) is unbounded which is a contradiction to the fact that \(x \in \Gamma^\Lambda \).

Thus \(\Gamma^\Lambda = \Lambda \).

Step (ii): We show that \(\Lambda^\Lambda = \Lambda \).

\(N \subseteq \Lambda \) implies \(\Lambda^\Lambda \subseteq \Gamma^\Lambda = \Lambda \) (by step (i)). That is \(\Lambda^\Lambda \subseteq \Lambda \). Also we have \(\Lambda \subseteq \Lambda^\Lambda \). Hence \(\Lambda \subseteq \Lambda^\Lambda \).

Step (iii): We show that \(X^\Lambda = \Lambda \).

\(N \subseteq X \subseteq \Lambda \) implies \(X^\Lambda \subseteq \Gamma^\Lambda \). Then by step (i) we have \(X^\Lambda \subseteq \Lambda \). Also \(X \subseteq \Lambda \) implies \(\Lambda^\Lambda \subseteq X^\Lambda \). Then by step (ii) we have \(\Lambda \subseteq X^\Lambda \). Thus \(X^\Lambda = \Lambda \).
Corollary 2.7. The only Λ perfect space X with $\Gamma \subseteq X \subseteq \Lambda$ is Λ.

Proof. Let X be such that $X^{\wedge\wedge} = X$. Since $\Gamma \subseteq X$ we have $X^\wedge \subseteq \Gamma^\wedge = \Lambda$ (by step (i) of 2.6). By applying step (ii) of 2.6, $\Lambda = \Lambda^\wedge \subseteq X^{\wedge\wedge} = X$. Also by hypothesis $X \subseteq \Lambda$. □

3. Sectional Analyticity

Definition 3.1. Let X and Y be FK spaces containing ϕ. Then A^+ is defined as $A^+(X) = \{ z \in \omega : (z f(\delta^k)) \in \Lambda \text{ for all } f \in X' \}$ and we put $A = A^+ \cap X$.

Lemma 3.2. Let X and Y be a be FK spaces containing ϕ. Then $A^+(X) \subset A^+(Y)$ wherever $X \subset Y$.

Proof. Let $Z \in A^+(X)$. Then $(Z_n f(\delta^n)) \in \Lambda$ for all $f \in X'$. Accordingly $(z_n g(\delta^n)) \in \Lambda$ for all $g \in Y'$ since $g|X \in X'$. This shows that $z \in A^+(Y)$. Hence $A^+(x) \subset A^+(Y)$. □

Definition 3.3. Let X be an FK space containing ϕ. Then X is said to have AA. Property (Abschnitts analytique) or sectional analyticity if and only if $X = A^+$.

Example 3.4. The space c_0 has both AK and AA properties. The space c_0 has AK [10]. It is enough to prove that c_0 has AA-property. For that we have to show that $c_0 \subset A^+$, $f \in c_0'$. Then $f(z) = \sum_{k=1}^{\infty} a_k z_k$ where $(a_k) \in l$. Therefore $f(\delta^k) = a_k$ for all k. But $l \subset \Lambda = c^\wedge$. Hence $(z f(\delta^k)) \in \Lambda$ and so $z \in A^+$. Hence $c_0 \subset A^+$. Therefore $A = A^+ \cap c_0 = c_0$.

Lemma 3.5. Let X be an FK space containing ϕ. Let $z \in \omega$. Then $z \in X^+ \wedge$ if and only if $z^{-1}X \supset \Gamma$.

Proof. Let $f \in (z^{-1}X)'$. Then by Theorem 4.4.10 of [10] $f(x) = \alpha x + g(zx)$ where $\alpha \in \phi$, $g \in X'$ and $\alpha x = \sum_{k=1}^{\infty} \alpha_k x_k$. Consequently $f(\delta^k) = \alpha_k + g(z\delta^k)$. That is $f(\delta^k) = \alpha_k + z_k g(\delta^k)$. Hence if $z \in A^+$, then $(z f(\delta^k)) \in A$ and so $(f(\delta^k)) \in \Lambda$ for all $f \in (z^{-1}X)'$. That is $(z^{-1}X)' \subset \Lambda$. But $\Lambda = \Gamma^f$. Since Γ has AD by Theorem 8.6.1 of [10], $\Gamma \subset z^{-1}X$. The reverse implication follows similarly. □

Theorem 3.6. Let X be an FK space containing ϕ. Then $z \in X^{f^\wedge}$ if and only if $z^{-1}X \supset \Gamma$.
Proof. First we note that by definition \(z \in A^+ \) if and only if \(z u \in A \) for every \(u \in X^f \). Hence \(A^+ = X^{f^\Lambda} \). By the Lemma 3.5, \(z \in A^+ \) if and only if \(z^{-1}X \supset \Gamma \). Hence \(z \in X^{f^\Lambda} \) if and only if \(z^{-1}X \supset \Gamma \). \(\square \)

Theorem 3.7. Let \(X \) be an FK space containing \(\phi \). If \(X \) has AA, then \(X^f \subset X^{\Lambda} \).

Proof. Suppose that \(X \) has AA. Then \(X = A = A^+ \cap X \). So that \(X \subset A^+ = X^{f^\Lambda} \). Hence \(X^\Lambda \supset X^{f^\Lambda} \). Therefore \(X^\Lambda \supset X^f \). \(\square \)

Theorem 3.8. Let \(X \) be an FK space \(\supset \phi \). If \(X \) has AK then \(X \) has AA.

Proof. Suppose \(X \) has AK. Then we have \(X^\beta = X^f \). This implies \(X \subset X^{\beta\beta} = X^{f\beta} \). Also we have \(X \subset X^{f\beta} \subset X^{f^\Lambda} \). That is \(X \subset X^{f^\Lambda} \). This means that \(X \subset A^+ \) consequently \(A = X \). Hence \(X \) has AA property. \(\square \)

Remark 3.9. The converse of Theorem 3.8 need not be true. Consider the space \(c, A^+(c) = c^{f^\Lambda} = f^\Lambda = \Lambda \). Now \(A = A^+ \cap c = \Lambda \cap c = c \). Therefore \(c \) has AA. But \(c \) does not posses AK-Property.

Acknowledgement. The authors wish to thank the referees for their valuable suggestions that improved the presentation of the paper.

References

a Department of Mathematics, Kamaraj College, Tuticorin, Tamil Nadu, India
Email address: satbalu@yahoo.com

b Department of Mathematics, G. Vengadaswamy Naidu College, Kovilpatti 628502, Tamil Nadu, India
Email address: raniseelan_92@yahoo.co.in

c Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, Tamil Nadu, India
Email address: tamche_59@yahoo.co.in