Abstract

Web spam has a significant influence on the ranking quality of web search results because it promotes unimportant web pages. Therefore, web search engines need to filter web spam. Web spam filtering is a concept that identifies spam pages — web pages contributing to web spam. TrustRank, Anti-TrustRank, Spam Mass, and Link Farm Spam are well-known web spam filtering algorithms in the research literature. The output of these algorithms depends upon the input seed. Thus, refinement in the input seed may lead to improvement in the quality of web spam filtering. In this paper, we propose seed refinement techniques for the four well-known spam filtering algorithms. Then, we modify algorithms, which we call modified spam filtering algorithms by applying these techniques to the original ones. In addition, we propose a strategy to achieve better quality for web spam filtering. In this strategy, we consider the possibility that the modified algorithms may support one another if placed in appropriate succession. In the experiments we show the effect of seed refinement. For this goal, we first show that our modified algorithms outperform the respective original algorithms in terms of the quality of web spam filtering. Then, we show that the best succession significantly outperforms the best known original and the best modified algorithms by up to 1.38 times within typical value ranges of parameters in terms of recall while preserving precision.

Keywords: 웹 스팸 필터링, 입력 시드 정제, 랭크 스팸, 성능

I. Introduction

World Wide Web (WWW) is a huge information resource, and it doubles in less than two years\(^2\). Thus, it would be difficult to find information from WWW without search assistance. A web search engine is a search system for retrieving relevant web
pages for the user’s queries from the WWW\(^2\).
Google\(^3\), Yahoo\(^4\), MS Bing\(^5\), and Naver\(^6\) are popular examples of web search engines.

A web search engine usually returns a huge amount of relevant web pages for the user’s query\(^2\).
However, the user wants to browse the most important ones\(^7\). Thus, the web search engine arranges the relevant web pages in the order of their importance\(^7\). For this the web search engine utilizes a ranking method\(^1\).

Link-based ranking methods are prevalent in popular web search engines\(^2, 9, 10\) such as Google,
Yahoo, and MS Bing\(^5\). These methods exploit the link structure of web for ranking the search results\(^8\). However, the methods suffer from link spam\(^9\), which is the type of web spam that takes advantage of the link structure of web in order to boost importance of one or more unimportant web pages\(^11, 12\). In order to filter out link spam, many link spam filtering algorithms have been proposed\(^13, 14\).

However, the algorithms do not perform well if the seed given to the algorithms is not good because they are dependent upon the seed. Thus, if the seed is well refined, the quality of the spam filtering algorithms will get improved. So far, much research has been done on the link spam filtering algorithms. However, research on seed refinement techniques has been less than adequate.

In this paper, we propose input seed refinement techniques for four well-known web spam filtering algorithms i.e., TrustRank\(^\text{14}\), Anti-TrustRank\(^\text{15}\), Spam Mass\(^\text{13}\), and Link Farm Spam\(^\text{36}\). The contributions of the paper are as follows. First, we propose the modified algorithms for four web spam filtering algorithms by making use of additional input seed sets. Specifically, the four web spam filtering algorithms use at most one type of seed set (either for spam or non-spam). However, we modify these algorithms to use both types of input seed sets (i.e., seed sets for spam and non-spam) to detect more web spam. Next, we propose a strategy that arranges the execution sequence of our modified algorithms in order to achieve better quality of web spam filtering.

Finally, we conduct extensive experiments to show the effect of seed refinement. We first show the quality improvement of our algorithms compared to the corresponding original ones. Then, we evaluate the best succession among our algorithms.

The rest of this paper is organized as follows. In Section II, we introduce the web graph model, PageRank, and link spam. In Section III, we introduce the four well-known web spam filtering algorithms. In Section IV, we explain our modifications in the four well-known algorithms and investigate successions among them. In Section V, we show the results of our evaluation. In Section VI, we conclude the paper.

II. Preliminary

In this section, we introduce a graph model for web: web graph model. Then, we explain the PageRank algorithm, which is a popular link-based ranking algorithm\(^17\). Finally, we explain link spam.

2.1. Web Graph Model

Web can be modeled as a directed graph \(G=(V, E)\) consisting of a set \(V\) of web nodes (vertices) and a set \(E\) of directed links (edges)\(^14\).

Directed links are classified into \textit{inlinks} and \textit{outlinks}. \textit{Inlinks} are those incoming to a web node, and \textit{outlinks} are those outgoing from a web node\(^14\). Fig. 1 shows an example of a web graph. In this figure, \(A, B,\) and \(C\) represent web nodes while the arrows represent the links. \(\overrightarrow{AB}\) and \(\overrightarrow{BC}\) are the outlinks of the web nodes \(A\) and \(B\), respectively. \(\overrightarrow{AB}\) and \(\overrightarrow{BC}\) are the inlinks of the web nodes \(B\) and \(C\), respectively.

The web graph can be classified into two classes:

![그림 1. 웹 그래프의 예](image)

Fig. 1. An example of a web graph.
page-level and domain-level web graphs\cite{13,15,16}. In a page-level web graph, a web node represents page information (e.g., cnn.com/index.html), and a directed link represents a link (i.e., URL) contained in a web page. In a domain-level web graph, a domain (e.g., cnn.com) of web pages is represented by a web node, as a link represents all the inlinks or outlinks to or from this domain from or to another domain\cite{14}. In addition, algorithms on a domain-level web graph are more scalable compared to a page-level web graph, and the well-known web spam filtering algorithms\cite{13,14,15} use domain-level web graphs.

2.2. PageRank

PageRank\cite{2,21} is a well-known link-based ranking algorithm that exploits the link information to assign global importance score to the entire web\cite{14,17,19}. The basic idea of PageRank is that a web page is important if it is inlinked by many other pages. The PageRank score of a web page is computed as in Eq.(1)\cite{21}:

\[PR[p] = d \cdot \sum_{q:(p,q) \in E} \frac{PR[q]}{N_{outlink}(q)} + (1-d) \cdot v[p] \] (1)

In Eq.(1), \(PR[p] \) denotes the PageRank score of the web page \(p \), \(d \) is the damping factor, which is the probability of following an outlink; \(N_{outlink}(q) \) is the number of outlinks of the web page \(q \); \(v[p] \) is the probability that a user randomly jumps from \(p \) to any arbitrary web page. The probability is uniform and is defined as reciprocal to the total number of web pages\cite{21}. The PageRank algorithm can be applied to rank domains by using a domain-level web graph in place of a page-level web graph\cite{21}.

2.3. Link Spam

Web spam is a deliberate action performed in order to boost a web page’s ranking without improving its real merit\cite{21,31,32}. Link spam is an action that changes the link structure of web in order to boost a web page’s ranking\cite{14}. Fig.2 shows an example of link spam.

In this figure, there are eleven domains from \(D1 \) to \(D11 \). The domains \(D3 \) to \(D8 \) contain pages that outlink to pages of the domain \(D1 \). This link structure is created in order to provide undue advantage to the pages of the domain \(D1 \), i.e., to make those pages look important because they are inlinked by many pages of different domains. The domains \(D1 \) and \(D3 \) to \(D8 \) are involved in web spam. However, the domains \(D2 \), \(D9 \), \(D10 \), and \(D11 \) are not participating in web spam. The domains that are involved in web spam are known as spam domains while the rest are known as non-spam domains.

III. Related Work

In this section, we review four well-known web spam filtering algorithms. In Section 3.1 we present a brief overview of classification (i.e., seed generators and spam detectors) of the four well-known algorithms. In Section 3.2 we describe TrustRank that promotes non-spam domains and Anti-TrustRank that demotes spam domains as seed generators. In Section 3.3 we describe Spam Mass and Link Farm Spam, which are spam detectors.

3.1. Overview

Web spam filtering is an action to identify web spam. To achieve this goal, existing work makes use of the link structure of web, manually declared spam or non-spam domains (simply, the input seed set), and additional information for declaring spam or non-spam domains. Research on web spam filtering is classified into two approaches: one of evaluating badness (or goodness) of domains by using only the input seed set and the other of identifying spam...
domains by exploiting additional properties of webspam. It is well known that, though the former can identify web spam, the quality of the results is insufficient\cite{13,15}. The latter detects more spam domains than the former because it adopts techniques uncovering boosting activity explained in Section 2.3. However, the former may help generate the refined input seed set, which can be used as the input of the latter. We expect that the refined input may help improve the quality of web spam filtering. Based on this expectation, we classify web spam filtering algorithms into two types of algorithms: seed generation algorithms (simply, seed generators) and spam detection algorithms (simply, spam detectors).

3.2. Seed Generation Algorithms

3.2.1. Trust Rank
TrustRank\cite{34} exploits the outlink information of trusted domains, which are defined as well-known non-spam domains such as gov and edu. TrustRank begins by taking as the input a seed set of non-spam domains. Then, it propagates trust scores of the non-spam domains to the outlinks of the domains while attenuating by the damping factor as defined in Section 2.2. Finally, a threshold value is chosen, and all domains whose trust scores fall above this value are declared as new non-spam domains.

3.2.2. Anti-Trust Rank
Anti-TrustRank\cite{35} exploits the inlink information of the spam domains that are provided as the input seed. Anti-TrustRank propagates anti-trust scores of the spam domains to their inlinks (i.e., in the reverse direction) while attenuating by the damping factor. Finally, a threshold value is chosen, and all domains whose anti-trust scores fall above this value are declared as new spam domains.

3.3. Spam Detection Algorithms

3.3.1. Spam Mass
Spam Mass\cite{33} exploits both the scores coming from spam and non-spam domains\cite{31}. The spam score is estimated by subtracting the non-spam score from the overall score. TrustRank is used to calculate the non-spam score, and the overall score is calculated by PageRank. The basic assumption of this algorithm is that a spam domain usually gets a high score from suspicious domains, which are not trusted by TrustRank. Under the assumption, this algorithm declares a domain that receives excessively higher PageRank score compared to the trust score as a spam domain.

3.3.2. Link Farm Spam
Link Farm Spam\cite{30} exploits bidirectional links and outlinks of domains. That is, if a domain has many bidirectional links or many outlinks to spam domains, the domain is declared as a spam domain. Link Farm Spam begins by finding bidirectional links among domains and marks a domain as a spam if the number of bidirectional links of the domain is equal to or greater than a given threshold. Then, the algorithm attempts to find more spam domains by observing outlinks and marks a domain as a spam if the number of its outlinks to spam domains is equal to or greater than another threshold. We denote the threshold dealing with bidirectional links by limitBL and that dealing with outlinks by limitOL.

IV. Input Seed Refinement for Web Spam Filtering Algorithms

In this section, we propose modifications of four web spam filtering algorithms. We also propose a strategy for determining the succession (i.e., the execution sequence) of our modified algorithms in order to get better quality of web spam filtering.

4.1. Overview
The objective of seed refinement for web spam filtering is to improve the quality of web spam filtering. Specifically, the objective is to maximize the correct detections over the total detections (simply, precision\cite{21}), to maximize the fraction of the correct
detections over entire spam or non-spam population (simply, recall\(^{[3]}\)), or both.

In Section III, we have observed that the existing spam filtering algorithms depend on the input seed set. However, they utilize only one type of the input seed set belonging to either spam or non-spam seed domain. Thus, if both types are provided as input seed sets to the algorithms, it may improve the quality of web spam filtering. Furthermore, an output from one algorithm can become the input to the other algorithm. Thus, the effective succession between these algorithms may lead to further improvement.

4.2. Seed Generation Algorithms

4.2.1. Modified TrustRank

TrustRank takes as the input seed set a set of trusted domains. This algorithm may promote spam domains since trusted (i.e., non-spam) domains can outlink to spam domains. For example, a trusted university domain may outlink to a student’s domain which may in turn outlink to a honey pot. In Fig.3, the domain 1 represents the university’s domain, the domain 3 represents the student’s domain, and the domains 5 and 6 are the part of a honey pot.

In Fig.3, we observe that the spam domains 5 and 6 receive high trust scores because the domain 3 is deceived by the domain 5. In order to overcome this potential shortcoming caused by outlinking from a non-spam domain to a spam domain, we add another seed set of known spam domains, which serves as an exception list, so that the links to the spam domains do not contribute to the trust scores of the domains.

Fig.4 shows the algorithm of Modified TrustRank. Inputs to the algorithm are a set of non-spam domains \(N \), a set of spam domains \(S \), the threshold value \(\text{cutoff} \), and web graph \(G \). Hereafter, we use these inputs for other algorithms as well unless we explicitly specify different inputs. The output is a set of non-spam domains \(O_N \) and the trust score vector of all domains \(T_{\text{ordered}} \). The threshold \(\text{cutoff} \) is used for determining the non-spam domains at the end of the algorithm\(^{[4],\ [13]}\). This threshold is defined relative to the size of the non-spam input seed set so that top \(\text{cutoff} \) percent of domains with the high trust scores are declared as non-spam domains. For example, if \(\text{cutoff} = 100\% \), the number of domains declared as non-spam domains is equal to that of the non-spam seed set under the ideal assumption that every domain declared as non-spam has a non-zero trust score because the score is affected by trust scores propagated from the non-spam seed set. We define this case as the base case for TrustRank and

\[
\text{Algorithm:}
\begin{align*}
&1. \text{FOR EACH } d \in F \\
&2. \quad \text{IF } d \in N \text{ THEN} \\
&3. \quad \quad T_d[\text{seed}] = \frac{1}{\text{deg}(N)} \\
&4. \quad \text{ELSE} \\
&5. \quad \quad T_d[\text{seed}] = 0 \\
&6. \quad \text{IF } d \in S \text{ THEN} \\
&7. \quad \quad T_d[\text{seed}] = \frac{1}{\text{deg}(S)} + (1 - \text{damp}) T_d[d] \\
&8. \quad \text{ELSE} \\
&9. \quad \quad T_d[\text{seed}] = T_d[d] \\
&10. \quad \Delta = |T_d[d] - T_d[i]| \\
&11. \quad \text{IF } \Delta \geq \text{cutoff} \text{ THEN} \\
&12. \quad \quad \text{Set } T_{\text{ordered}} \text{ by trust scores in the descending order} \\
&13. \quad \quad \text{Remove domains whose trust score } = 0 \text{ from } O_N \\
&14. \quad \text{RETURN } O_N, T_{\text{ordered}}
\end{align*}
\]

Fig. 4. Modified TrustRank algorithm.

그림 3. 스팸 도메인에 놓은 신뢰 점수를 부여하는 TrustRank의 예

그림 3. An example of TrustRank giving high trust scores to spam domains.

* Honey pot is a set of pages which provide some useful information (e.g., Unix documentation pages) but have hidden outlinks to spam pages\(^{[20]}\).
Modified TrustRank. In fact, the size of domains declared as non-spam domains is less than or equal to that of the non-spam seed set because we remove the domains whose trust score = 0 from the domains declared as non-spam. Compared with original TrustRank algorithm, the modified algorithm additionally gets the set of spam domains S as an input seed set and uses it for preventing scores of non-spam domains from propagating to spam domains(lines 10–11). The algorithm first initializes the trust scores of all domains by assigning a uniform value $1/\text{size}(N)$ to every non-spam domain N and zero to the rest of domains(lines 1–5). Then, it iteratively calculates trust scores until the difference between the two consecutive trust score vectors is less than ϵ(lines 7–16). Specifically, the algorithm uniformly distributes trust scores of domains to their outlinks pointing to all domains except spam domains while taking the damping factor into account(lines 8–11). Here, $N_{\text{outlink}}(d)$ represents the number of outlinks of the domain d(line 11). Then, the algorithm assigns the random jump value to all domains according to their trust scores(lines 12–13). All the domains are arranged in the descending order of their trust scores(line 17), and then, the algorithm picks domains with the highest trust scores that are determined by cutoff defined earlier and adds the domains to O_N(line 18). Then, the domains with a zero trust score are removed from O_N(line 19). Finally, the algorithm returns O_N and T_{ordered}(line 20).

4.2.2. Modified Anti–TrustRank

Anti–TrustRank takes as the input seed set a set of spam domains. The algorithm may denote non-spam domains that point to spam domains such as honey pots as mentioned in Section 4.2.1.

Fig. 5 shows the algorithm of Modified Anti–TrustRank. The output is a set of spam domains O_S and the anti-trust score vector of all domains AT_{ordered}. The threshold cutoff is used for determining the spam domains at the end of the algorithm. This threshold is defined relative to the size of the spam input seed set so that top cutoff percent of domains with the high anti-trust scores are declared as spam domains. For example, if cutoff = 100%, the number of domains declared as spam domains is equal to that of the spam seed set under the assumption similar to what we made in Section 4.2.1 except that this assumption is based on the spam seed set and anti-trust score. We define this case as the base case for Anti–TrustRank and Modified Anti–TrustRank. Compared with original Anti–TrustRank algorithm, the modified algorithm additionally gets the set of non-spam domains N as an input seed set and uses it for preventing anti-trust scores of spam domains from propagating to non-spam domains(lines 10–11). The proposed algorithm first initializes the anti-trust scores of all domains by assigning a uniform value $1/\text{size}(S)$ to every spam domain S and zero to the rest of domains(lines 1–5). Then, it iteratively calculates anti-trust scores until the difference between the two consecutive anti-trust score vectors is less than ϵ(lines 7–16). Specifically, the algorithm uniformly distributes anti-trust scores of domains to their inlinks pointing to all domains except non-spam domains while taking the damping factor into account.
account (lines 8-11). Here, \(N_{\text{inlink}}(d) \) represents the number of inlinks of the domain \(d \) (line 11). Then, the algorithm assigns the random jump value to all domains according to their anti-trust scores (lines 12-13). All the domains are arranged in the descending order of their anti-trust scores (line 17), and then, the algorithm picks domains with the highest anti-trust scores that are determined by \(\text{cutoff} \) and adds the domains to \(O_3 \) (line 18). Then, the domains with a zero anti-trust score are removed from \(O_3 \) (line 19). Finally, the algorithm returns \(O_3 \) and \(AT_{\text{removed}} \) (line 20).

4.3. Spam Detection Algorithms

4.3.1. Modified Spam Mass

Spam Mass uses TrustRank for determining spam domains so it suffers from the same problem as explained in Section 4.2.1. Thus, we substitute Modified TrustRank in place of TrustRank for performing Modified Spam Mass. Fig. 6 shows the algorithm of Modified Spam Mass. Inputs to the algorithm are a set of non-spam domains \(N \), set of spam domains \(S \), the threshold value \(\text{topPR} \), the threshold value \(\text{relativeMass} \), the difference threshold \(\epsilon \), and web graph \(G \). The output is a set of spam domains \(O_3 \). The threshold \(\text{topPR} \) represents the minimum PageRank score of a domain so that the domain is considered as a candidate for web spam \(^{[13]} \).

The threshold \(\text{relativeMass} \) is defined as the ratio of the spam score to the overall score as explained in Section 3.3.1. It is used for deciding a domain as a spam domain so that, if the domain receives excessively higher spam score compared to non-spam score, the domain is a candidate for web spam \(^{[13]} \).

While original Spam Mass algorithm calls original TrustRank for computing trust scores for all domains, the modified algorithm first initializes two vectors of trust scores and PageRank scores by using Modified TrustRank and PageRank, respectively (lines 1-2). Then, a domain is declared as a spam if it meets two thresholds constraints, \(\text{topPR} \) and \(\text{relativeMass} \) (lines 3-6). First, a domain should have at least \(\text{topPR} \) PageRank score to be considered as a spam (line 4). Second, the domain also should have a fractional value higher than or equal to \(\text{relativeMass} \) (line 5). Here, the fractional value of a domain is defined as the ratio of the difference between its PageRank score and its trust score to the PageRank score. If a domain satisfies the two constraints, the domain is added to \(O_3 \) (line 6). Finally, the algorithm returns \(O_3 \) (line 7).

4.3.2. Modified Link Farm Spam

Link Farm Spam does not take any input seed. However, we argue that the input seed set of spam and non-spam domains would improve the quality of its spam filtering. That is, a seed set of non-spam domains should
domains allows us to minimize wrong spam detections such as well-known trusted domains (i.e., .gov, .edu, etc.), and a seed set of spam domains would help in identifying more spam domains.

Fig. 7 presents the algorithm of Modified Link Farm Spam. Inputs to the algorithm are a set of non-spam domains \(N \), a set of spam domains \(S \), the threshold value \(limitBL \) (defined in Section 3.3.2), the threshold value \(limitOL \) (defined in Section 3.3.2), and web graph \(G \). The output is a set of spam domains \(O_S \). Compared with original Link Farm Spam algorithm, the modified algorithm additionally gets the two sets of non-spam domains \(N \) and spam domains \(S \) as input seed sets and uses them (lines 1-11). The algorithm first initializes \(O_S \) with \(S \) (line 1). Then, the algorithm considers domains as spam domains if they have many bidirectional links with the domains that are not included in non-spam domains given as the seed (lines 2-7). Here, non-spam domains are not considered as spam domains although they have many bidirectional links (line 3). \(inDomain(d) \) represents the set of domains pointing to the domain \(d \) (line 4), and \(outDomain(d) \) represents the set of domains pointed by the domain \(d \) (line 5). The domain \(d \) is considered as a spam domain (line 7) if the constraint for \(limitBL \) is satisfied (line 6). After finding spam domains \(O_S \) due to bidirectional links, the algorithm additionally declares the domains that have many outgoing links to \(O_S \) as spam domains (lines 9-14). This process (lines 9-14) continues until no more spam domain can be found (line 15). Finally, the algorithm returns \(O_S \) (line 16).

4.4. Successions of Web Spam Filtering Algorithms

In this section, we present successions among Modified TrustRank (MTR), Modified Anti-TrustRank (MATR), Modified Spam Mass (MSM), and Modified Link Farm Spam (MLFS). We first introduce the global view of successions among web spam filtering algorithms; then, we present the possible successions.

4.4.1. Global View of Successions

Seed generators are not pure spam detection algorithms; instead, they promote and demote spam and non-spam domains as discussed in Section 3. Therefore, we believe that MTR and MATR can help generate refined input seed sets. Since spam detectors require input seed sets with better quality for their operations, seed generators could provide good input seed sets if they come in succession. In the seed generators, our concern is how to precisely determine the seed sets of spam and non-spam domains whereas, in the spam detectors, our concern is how to correctly detect spam domains.

Our strategy is to execute the succession of seed generators (MTR and MATR) and that of spam detectors (MSM and MLFS) in turn. The input to the former succession of seed generators is lists of spam and non-spam domains, which are manually labeled. We call these domains the manual spam and non-spam seed domains. The output of the former succession is the input of the latter succession for spam detectors. We call the output the refined spam and non-spam seed domains. Finally, the output from the latter succession is a list of spam domains detected. We call these spam domains the detected spam domains. In Sections 4.2.2 and 4.2.3, we explain the successions inside each class.

4.4.2. Possible Successions inside the Seed Generator

The possible successions between MTR and
In this section, we evaluate the effectiveness of our modifications over the original four web spam filtering algorithms. We also evaluate the effectiveness of the successions of the modifications and find the best one from those successions.

5.1. Experimental Data and Environment
We use two sets of experiments. In the first set, we show the effect of refining seed for four web spam filtering algorithms \(^{(13,14,15,36)}\) by comparing the original algorithms with our modified algorithms. In the second set, we show the effect of arranging the execution sequence among our modified algorithms. To achieve this goal, we get all the possible successions of the modified algorithms on the basis of the classification explained in Section 4.4. Then, we find the best succession. Finally, we show the results.

Table 2. Algorithms compared in the experiments.

<table>
<thead>
<tr>
<th>Sets of the experiments</th>
<th>Experiments</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons for the effect of ordering executions</td>
<td>Exp. 6 Finding the best succession for the spam detector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp. 7 Comparison among the best successions, the best known algorithm, and best modified algorithm</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Summary of the experiments.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9. Possible successions inside the spam detector.

MATR for the seed generator are shown in Fig. 8. In Succession 1, we run MATR followed by MTR (MATR-MTR); in Succession 2, we run MTR followed by MATR(MTR-MATR). Under both successions, the manual spam seed domains are refined by MATR while the manual non-spam seed domains are refined by MTR.

4.4.3. Possible Successions inside the Spam Detector
The possible successions between MSM and MLFS for the spam detector are shown in Fig. 9. In Succession 1, we run MLFS followed by MSM/MLFS-MSM; in Succession 2, we run MSM followed by MLFS/MSM-MLFS. Under both successions, we use the refined spam and non-spam seed domains as the input seed set. Here, we perform two more tests using single algorithms, i.e., MLFS and MSM, using the refined spam and non-spam seed domains as the input seed set, to investigate the effect of the succession of spam detectors. Table 1 shows the two types of tests for the spam detector.

Table 1. Tests for the spam detector.

<table>
<thead>
<tr>
<th>Successions</th>
<th>Single Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLFS-MSM</td>
<td>MSM-MLFS</td>
</tr>
<tr>
<td></td>
<td>MLFS</td>
</tr>
<tr>
<td></td>
<td>MSM</td>
</tr>
</tbody>
</table>

V. Performance Evaluation
quality improvement in web spam filtering of the best successions over the best modified and the best
known original algorithms. Table 2 summarizes the
algorithms that we compare in the experiments, and
Table 3 summarizes the experiments.
In all the experiments, we use the public data set
of UK-2006 domains. The data set consists of
7,473 domains labeled as either spam or non-spam
while the rest of 3,929 domains are unlabeled. The
labeled data set is classified into two disjoint sets in
order to perform evaluation: Seed Set is the input
seed set for the algorithms shown in Table 2, and
Test Set is the universal set of domains that are
used for computing the quality (i.e., precision and
recall) of the outputs obtained from the algorithms.
In addition, in order to enhance the quality of web
spam filtering, we label more spam and non-spam
domains by using the well-known labeling rule
and then, add them to Seed Set. That is, we
label domains that contain spam terms in their
domain name (e.g., mp3, mortgage, and sex) as spam
domains. We also label trusted administrative and
educational domains (e.g., ac.uk, .gov.uk, and
.police.uk) as non-spam domains.

Table 4 summarizes the characteristics of the data
set in terms of domains and web pages. This data
set has been prevalently used for web spam
filtering. Table 5 shows Seed Set and Test
Set for the data set. Here, "Before Additional
Labeling" represents the original seed set shown
in . "After Additional Labeling" represents the input
seed set augmented by using the rules explained
above. Hereafter, labeled spam domains of "After
Additional Labeling" in Seed Set are called Spam
Seed Set, and labeled non-spam domains of "After
Additional Labeling" in Seed Set are called
Non-Spam Seed Set. We conduct all the experiments
using a Linux 2.6 system with a Pentium Core2Duo
3.0 GHz processor and 3.0 GBytes of main memory.

5.2. Experimental Measures and Parameters
In order to evaluate the quality of the algorithms
shown in Table 2, we use two well-known measures:
precision and recall. In all the algorithms other
than TR and MTR, precision means how accurately
an algorithm detects spam domains from Test
Set (i.e., the ratio of the number of spam domains
collected from Test Set to that of domains collected
from Test Set), and recall means how large a portion
of spam domains the algorithm detects from Test
Set (i.e., the ratio of the number of spam domains
collected from Test Set to that of spam domains in
Test Set). In TR and MTR, because the two
algorithms detect non-spam (i.e., trusted) domains,
precision and recall are defined in the same way as
explained above except that they are defined in terms
of the non-spam domains. Table 6 summarizes input
parameters for the experiments.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dump</td>
<td>It is a parameter used in FR, MTR, ATR, and MTR for representing the probability of following an outlink.</td>
</tr>
<tr>
<td>ratioSM</td>
<td>It is the ratio for determining the input seed set in FR, MTR, ATR, and MTR. Specifically, from Spam (Non-Spam) Seed Set, we retrieve domains whose PageRank score is larger than or equal to the PageRank score of top ratioSM % domain among the entire domains, and then, use the retrieved domains as the input seed.</td>
</tr>
<tr>
<td>cutoffSM</td>
<td>It is the cutoff threshold explained in Section 4.2.1. It is used in TR and MTR for determining a domain as a candidate of being non-spam.</td>
</tr>
<tr>
<td>relativeMass</td>
<td>It is the threshold used in MSM and MTR for determining a domain as a spam such that, if the ratio of the spam score (i.e., PageRank-score) of a domain to the overall score (i.e., PageRank-score) of the domain is larger than or equal to relativeMass, the domain is a candidate for being web spam.</td>
</tr>
<tr>
<td>thresholdA</td>
<td>It is the threshold used in LFS and LFS for determining a domain as a spam if the number of bidirectional links of the domain is equal to or greater than this threshold.</td>
</tr>
<tr>
<td>thresholdB</td>
<td>It is the threshold used in LFS and LFS for determining a domain as a spam if the number of outlinks of the domain pointing to spam domains is equal to or greater than this threshold.</td>
</tr>
</tbody>
</table>

Table 6. Parameters used in the experiments.
5.3. Experimental Results

In Section 5.3.1, we show the results of the comparisons between the original web spam filtering algorithms and our modified algorithms. In Section 5.3.2, we show the results of the comparisons between the possible successions of our algorithms.

5.3.1. Comparisons between original and modified algorithms

Exp. 1: comparison between TR and MTR

Figs.10 and 11 show the results as \(\text{ratio}_{\text{top}}\) is varied: 10%, 50%, and 100%. Here, we choose the value range of \(\text{cutoff}_{\text{ATr}}\) so that TR and MTR declare all domains in Test Set as candidates of being non-spam domains at the high end of the value range (i.e., we choose the value range of \(\text{cutoff}_{\text{ATr}}\) by considering the base case for TR and MTR as mentioned in Section 2). We use Spam Seed Set and Non-Spam Seed Set. Then, as explained in Table 6, we obtain the input seed sets for the trusted domains from Non-Spam Seed Set as \(\text{ratio}_{\text{top}}\) is varied. Hereafter, we use the two seed sets, Spam Seed Set and Non-Spam Seed Set, as the input seed sets unless otherwise specified. We set the damping factor to 0.85, which is considered as the standard[14, 36]. Hereafter, the damping factor is fixed for every experiment that needs it.

Figs.10 and 11 show that MTR performs slightly better than TR. In both Figs.10 and 11, precision and recall of MTR is overall higher than those of TR in the range where \(\text{cutoff}_{\text{ATr}}\leq110\%\). From the starting

![Graphs showing precision and recall](image)

그림 10. \(\text{ratio}_{\text{top}}\)의 변화에 따른 정확도와 재현율

Fig. 10. Precision as \(\text{ratio}_{\text{top}}\) is varied.

point where \(\text{cutoff}_{\text{ATr}} > 110\%\), precision start decreasing sharply to the lowest as shown in Fig.10(c). The lowest point of precision is the point where almost every domain is marked as non-spam due to the high value of \(\text{cutoff}_{\text{ATr}}\). Thus, from this point, increase in the value \(\text{cutoff}_{\text{ATr}}\) would bear no change in recall while only decreasing precision. Therefore, all the points where precision is the lowest are insignificant for comparison.

From Figs.10 and 11 we observe \(\text{ratio}_{\text{top}}=100\%\) provides higher recall and comparable precision compared to other \(\text{ratio}_{\text{top}}\) values. Thus, hereafter, we fix the value of \(\text{ratio}_{\text{top}}\) as 100%. When \(\text{ratio}_{\text{top}}=100\%\) as shown in Fig.10(c), we observe that the effective \(\text{cutoff}_{\text{TTR}}\) value is 110% since from that point onwards precision sharply decreases. When \(\text{cutoff}_{\text{ATr}}=110\%\) in Figs.10(c) and 11(c), the precision of MTR is better than that of TR while the recall of MTR is the same as that of TR: the precision of MTR is 0.83, the precision of TR is 0.79, and their recalls are 0.27. Thus, we conclude that MTR is better than TR.

Exp. 2: comparison between ATR and MATR

Figs.12 and 13 show the results comparing the ATR with the MATR. Here, we choose the value range of \(\text{cutoff}_{\text{ATr}}\) so that ATR and MATR declare all domains in Test Set as candidates of being spam domains at the high end of the value range (i.e., we choose the value range of \(\text{cutoff}_{\text{ATr}}\) by considering the base case for ATR and MATR as mentioned in
Section 2). As explained in Table 6, we obtain the input seed sets for spam domains from Spam Seed Set as $\text{ratio}_{\text{top}}$ is varied. In both Figs.12 and 13 we observe that MATR reaches the maximum recall much earlier than ATR. That is why the point of sharp decrease in precision and increase in recall also occurs earlier in MATR compared to ATR, as can be seen in above Figs.12 and 13(b) and (c). For a similar reason to that of Experiment 1, before this sharp decrease in precision, we observe comparable precision and better recall for MATR compared to ATR. We also see that, due to the same reason as explained in Experiment 1, the lowest points of precision shown in Fig.12(c) are insignificant for comparison.

Hereafter, we fix the value of $\text{ratio}_{\text{top}}$ at 100% for same reason as mentioned in Experiment 1. When $\text{ratio}_{\text{top}}=100\%$ as shown in Fig.12(c), we observe that the effective cutoff value is 182\% from that point onwards precision sharply decreases. When $\text{cutoff}_{\text{ATR}}=182\%$ in Figs.12(c) and 13(c), the recall of MATR is better than that of ATR while the precision of MATR is the same as that of ATR. The recall of MATR is 0.34, the recall of ATR is 0.24, and their precisions are 0.99. Thus, we conclude that MATR is better than ATR.

Exp. 3: comparison between SM and MSM

Figs.14 and 15 show the results comparing SM with MSM. In each figure, (a)–(c) show the effect of spam detection as topPR is varied: 70\%, 85\%, and 100\%. The original paper[13] of SM chooses an arbitrary low topPR value (approximately 1.2\%) since the authors assume that spam domains have high (i.e., top-1.2\%) PageRank values with high probability. However, we choose high values of topPR to investigate all domains and precisely determine whether or not a domain is a spam domain. Here, we vary relativeMass from 0.7 to 1.0. As explained in Section 3.3.1 and Table 6, we can have a chance to
precisely detect actual spam domains as the value of $relativeMass$ approaches 1.0 since the value represents the maximum effective degree of spam domains contributing to a domain. We do not consider the case that the value is smaller than 0.7 because, at this range, precision decreases while recall preserves or increases trivially. Existing work also considers the value that is larger than 0.7 (specifically, 0.98 [13]).

Figs. 14 and 15 show that MSM performs slightly better than SM. In both Figs. 14 and 15 the precision and recall of MSM is higher than or equal to those of SM for all the points. We also see that MSM shows better quality than SM as $relativeMass$ increases. Considering $relativeMass$ at 0.98 as in [13], we observe both the precision and recall of MSM are better than that of SM: the precision of MSM is 0.86, the precision of SM is 0.85, the recall of MSM is 0.77, and the recall of SM is 0.72.

Hereafter, we fix the value of $topPR$ at 100% since we observe higher recall and comparable precision compared to other values of $topPR$. Suppose that $topPR$ and $relativeMass$ are set to 100% and 1.0, respectively. Then, as explained in Sections 4.3.1, both of the two algorithms consider all domains (excluding the domains within Spam Seed Set) as non-spam domains. Since, hereafter, we fix the value of $topPR$ at 100%, we do not set $relativeMass$ to 1.0.

Exp. 4: comparison between LFS and MLFS

Fig. 16 shows the results comparing the LFS with the MLFS as limitBL and limitOL are varied. These two experimental parameters are taken pairwise on the x-axis with ranging values from 2 to 7 for each parameter [16].

Fig. 16 shows that MLFS performs much better than LFS in terms of precision and reasonably comparable in terms of recall. We observe, precision for MLFS is higher than that of LFS in all the points. Moreover, we see the range of difference (0.14 to 0.22) in precision of two algorithms is larger than that (0.04 to 0.06) in recall. In addition, the highest point of recall in MLFS beats many points of recall for LFS. Overall, MLFS provides higher precision compared to that of LFS even when both of the two algorithms offer similar recalls. Thus, MLFS is overall better than LFS.

From the experiment, we observe that MLFS has best reading at limitBL=2 and limitOL=2 since at that point recall is the highest compared to that at the other points, and precision is comparable to that at the rest of the points. At this point MLFS has relatively higher precision and comparable recall than those of LFS: the precision of MLFS is 0.78, the precision of LFS is 0.63, the recall of MLFS is 0.46, and the recall of LFS is 0.52.

In summary, we show that all the modified algorithms provide generally better quality than the respective original algorithms. In order to find the best original algorithms for detecting web spam, we compare precisions and recalls among ATR, SM, and LFS. In this comparison, we do not take TR into account because TR outputs non-spam domains as explained in Section 5.2. We find SM as the best algorithm among the three original algorithms since its recall is much higher while its precision is relatively comparable to the rest of the original algorithms as observed in Experiments 2 - 4. Similarly, we find MSM as the best one among the three modified algorithms MTR, MSM, and MLFS.

3.2. Comparisons for successions

In this section, we discuss the successions among the MTR, MTR, MSM, and MLFS. First, we perform succession tests for the seed generator and the spam detector, respectively. Then, we show the
best succession of algorithm between the seed generator and the spam detector. Finally, we compare the best succession with the best known original and the best modified algorithms.

Exp. 5: the best succession for the seed generator

We conduct experiments to find the best succession of MTR and $MATR$. Here, we conduct the experiment to show the quality of the refined non-spam seed. We also conduct the other experiment to show the quality of the refined spam seed. In the experiment for the refined non-spam seed, we vary the cutoff$_{0}$ from 50% to 160% while we fix cutoff$_{1}$ at 182% as the best point determined in Experiment 2. Similarly, for the refined spam seed we vary the cutoff$_{0}$ from 50% to 350% while we fix cutoff$_{1}$ at 110% as the best point determined in Experiment 1. Here, we choose the value ranges of those two parameters so that the results obtained at points within the ranges are meaningful. That is, we choose the ranges so that, near to the maximum value of the range, recall (or precision) reaches to one (or zero) or bears no change while only precision decreases.

From Fig.17, we observe $MATR\cdot MTR$ is better than $MTR\cdot MATR$ in terms of precision and comparable in terms of recall for non-spam seed generation. From Fig.18, we observe $MTR\cdot MATR$ is better than $MATR\cdot MTR$ in terms of precision and comparable in terms of recall for spam seed generation. Thus, we select $MATR\cdot MTR$ and $MTR\cdot MATR$ as the best successions of seed generators for non-spam

Fig. 17. Comparison on the quality of the refined non-spam seed between successions of the seed generators.

![Graph](attachment:graph17.png)

그림 17. 스팸 생성기의 연속들 간의 정제된 비 스팸 시드의 성질 비교

Fig. 18. Comparison on the quality of the refined spam seed between successions of the seed generators.

![Graph](attachment:graph18.png)

그림 18. 스팸 생성기의 연속들 간의 정제된 스팸 시드의 성질 비교

seed and spam seed, respectively.

Exp. 6: the best succession for the spam detector

We conduct experiments to find the best succession of spam detectors MSM and $MLFS$. As explained in Table 1, we perform experiments for two possible successions and two single algorithms. In this experiment, we use refined seed sets produced from the seed generators as the input seed sets for all the algorithms. Specifically, as observed in Experiment 5, we use the refined non-spam seed produced by $MATR\cdot MTR$, which is the best choice of the seed generation for the non-spam seed. We also use the refined spam seed produced by $MTR\cdot MATR$, which is the best choice of the seed generation for the spam seed. We vary relativeMass of MSM to show the tendency for comparison from 0.7 to 0.99 in the same way as in Experiment 3. We also exclude relativeMass=1.0 as observed in Experiment 3. As explained in Experiment 3, we fix topPR=100% in order to get spam domains as the results of investigating the entire domains. Moreover, as the best result of $MLFS$ in Experiment 4, we fix limitBL and limitOL thresholds at 2 and 2,

Fig. 19. Comparison on the quality of the detected spam domains among the spam detectors.

![Graph](attachment:graph19.png)

그림 19. 스팸 탐지기간의 정제된 스팸 도메인의 성질 비교
Fig. 19 show that MLFS has very low recall compared to the rest of the algorithms. We see that MLFS-MSM is nearly identical to MSM-MLFS in both precision and recall. We also see that those two algorithms (i.e., MLFS-MSM and MSM-MLFS) are almost comparable to MSM in terms of precision and are slightly better than MSM in terms of recall. Specifically, in Fig. 19b, when relativeMass=0.99, MLFS-MSM and MSM-MLFS have 0.88 of recall while MSM has 0.86 of recall. Moreover, those three algorithms have the same value of precision as 0.85 when relativeMass=0.99. Thus, either MLFS-MSM or MSM-MLFS is best. Consequently, we choose MLFS-MSM as the best succession of spam detectors without loss of generality.

In summary, we find MATR-MTR and MTR-MATR as the best choice of the seed generation for non-spam and spam seeds, respectively. We also see that MLFS-MSM, which uses non-spam and spam seeds produced by the best choice of the seed generation as input seed sets, is the best for the spam detection. Hereafter, the best found succession of the best seed generator (i.e., MATR-MTR for the non-spam seed and MTR-MATR for the spam seed) followed by the best spam detector (i.e., MLFS-MSM) is called SuccessionBest.

Exp. 7: comparison among the best succession, the best known algorithm, and the best modified algorithm

We conduct experiments to find quality improvement of the best succession against the best modified and original (i.e., known) algorithms for the detection of web spam. From the Experiments 2 – 4, we observe that SM is the best original algorithm among the three original algorithms. We also observe that MSM is the best modified algorithm among the modified algorithms. Moreover, we observe that MATR-MTR (for the non-spam seed) and MTR-MATR (for the spam seed), which are followed by MLFS-MSM, is the best succession of the modified algorithms (SuccessionBest). In this experiment, we use Spam Seed Set and Non-Spam Seed Set as the input seed sets for all the algorithms. In the same way as in Experiment 6, we vary the threshold relativeMass from 0.7 to 0.99, fix topPR at 100%, and keep limitBL and limitOL at 2 and 2, respectively. We use 110% cutoffH and 182% cutoffH as in Experiment 6.

In Fig. 20, we see that SuccessionBest performs better than or similar to both SM and MSM in terms of recall while SuccessionBest is relatively comparable to the rest in terms of precision. We also see that SuccessionBest provides better quality as relativeMass increases. Specifically, in Fig. 20, when relativeMass=0.99, we obtain the precisions 0.85, 0.86, and 0.85 for SM, MSM, and SuccessionBest, respectively. We also obtain the recalls 0.64, 0.70, and 0.88 for SM, MSM, and SuccessionBest, respectively. Thus, SuccessionBest outperforms other two algorithms by up to 1.38 times in recall while comparable to other two algorithms in precision. Consequently, we conclude that SuccessionBest is more effective than the rest for web spam filtering.

VI. Conclusions

In this paper, we have proposed seed refinement techniques for four well-known web spam filtering algorithms: TrustRank, Anti-TrustRank, Spam Mass, and Link Farm Spam. We enrich the input seed set by using both types of the input seed sets. These techniques are helpful in maximizing recall with precision. We also propose a strategy for the succession of the modified algorithms. We classify them into two classes: seed generators and spam
detectors. Modified TrustRank (MTR) and Modified Anti-TrustRank (MATR) are seed generators while Modified Spam Mass (MSM) and Modified Link Farm Spam (MLFS) are spam detectors. Moreover, we perform experiments between modified and original algorithms and also among the successions of modified algorithms in order to discover the best one. Our experimental results show that all the modified algorithms generally perform better than the original ones, and MSM is the best modified algorithm among them for web spam detection. We also show that the best quality among the successions is achieved by the MATR followed by MTR for non-spam seed generator and MTR followed by MATR for spam seed generator, which is then followed by MLFS and MSM/SuccessionBest. The best succession outperforms SM and MSM by up to 1.38 times in recall and is comparable to these two algorithms in precision the recalls of SM, MSM, and SuccessionBest are 0.64, 0.70, 0.88, respectively; the precisions of SM, MSM, and SuccessionBest are 0.85, 0.86, and 0.85, respectively.

참고문헌

저자 소개

Muhammad Atif Qureshi
2007년 University of Karachi (UoK), 전산학과 (학사)
2011년 한국과학기술원 전산학과 (석사)
2006년~2008년 UnHuman Productions, 신일연구원
2007년~2009년 Technology Orbit, S/W 개발자
2008년 University of Karachi, 전산학과, visiting faculty

<주관심분야 : 정보검색(IR), 웹 검색>

울 태섭 (학생회원)
2008년 경북대학교 컴퓨터공학과 (학사)
2010년 한국과학기술원 전산학과 (석사)
2010년~현재 한국과학기술원 전산학과 박사과정

<주관심분야 : 검색엔진, 정보검색(IR)>

이 정훈 (학생회원)
1995년 경북대학교 컴퓨터공학과 (학사)
1997년 경북대학교 컴퓨터공학과 (석사)
2010년 한국과학기술원 전산학과 (박사)
2010년 9월~2011년 3월 한국과학기술원 인수연구원(Post Doc.)
2011년 4월~현재 경북대학교 IT대학 컴퓨터학부 인수연구원(Post Doc.)

<주관심분야 : 검색(IR), 센서네트워크, 그래프 데이터베이스>

황규영 (평생회원)
1973년 서울대학교 전자공학과 (학사)
1975년 한국과학원 전기 및 전자학과 (석사)
1982년 Stanford University EE/CSL(석사)
1984년 Stanford University EE/CSL(박사)
1975년~1978년 국방과학연구소 산학연구원
1983년~1991년 IBM T.J. Watson Research Center, Research Staff Member
1992년~1994년 한국정보과학회 데이터베이스 연구회(SIGDB) 운영위원장
2009년~현재 Fellow, ACM
2007년~현재 Fellow, IEEE
2007년 한국정보과학회 회장
2002년~2005년 Associate Editor, IEEE Trans. on Knowledge and Data Engineering
1990년~2003년 Associate Editor, The VLDB Journal
1990년~1993년 Associate Editor, The IEEE Data Engineering Bulletin
1996년~2004년, 2010~현재 Trustee, The VLDB Endowment
2006년 General Chair, Int’l Conf. on Very Large Data Bases(VLDB)
2007년~2009년 Chair, Steering Committee, DASFAA
1990년~현재 한국과학기술원 전산학과 교수
2008년~현재 한국과학기술원 특훈교수

<주관심분야 : 데이터베이스 시스템, 멀티미디어, 검색엔진, GIS>