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Stability of a Generalized Quadratic Type Functional Equation
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Functional equations are useful in the experimental
scence because they play very important role for
researchers to formulate mathematical models in general
terms, through some not very restrictive equations that
only stipulate basic properties of functions showing in
these equations, without postulating the exact forms of
such functions.

Of lots of such functional equations, in this paper we
adopt and solve some generalized quadratic functional
equation

azf(_x_a'tx) + bzf('x—;l) = 2Rx) +2Ay)

l. Introduction

Functional equations are a useful tool for narrowing the
possible models for a phenomenon in that at least one
more not very restrictive equations can formulate a model
and when paired with an empirical or logical constraint of
a general character those equations lead to precise
quantitative refationships. In this paper we will deal one of
the functional equations problem.

In 1940, S. M. Ulam [9] gave a wide ranging talk
before a mathematical. Colloquium at the University of
Wisconsin in which he discussed a number of important
unsoived problems. Among those was the following
question concemning the stability of homomorphisms:

let G, be a grow and let G, be a metic
group with a metric d( - , - ). Given £ > 0, does
there exists a ¢>( such that if a function
h: G—G, satisfies the inequality
d(h(xy), H(h(y) < § for al x, ye G, then
tere is a homomomphism H: G,—G, with
d(h(x), Hx))<e foral xe G, ?

For the case where the answer is affirmative, the
functional equation for homomorphisms will be called
stable. The first result conceming the stability of functional
equations was presented by D. H. Hyers [1]. He has
excellently answered the question of Ulam for the case
where G, ad (G, ae Banach spaces. In 1978, a

generdlized version of the theorem of Hyers for
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approximately liner mappings was given by Th. M.
Rassias. During the last decades, the stability problems of
several functional equations have been extensively
investigated by a number of authors.

The quadratic funcion Ax) = x2 is a solution of
the functional equation

fx+y) + Ax—y) = 2/x) + 2Ay).
So, every solution of the functional equation

Ax+y) + Rx—y) = 2Ax) + 2Ay) s said to be
a quadratic function. S. H. Lee[3] proved the stability of
the equation

f(EE2) + (2] = 2A0 + 240,

In this paper we deal with a generalized quadratic
functional equation

azf(x—jl) + bzf(—x—;—l) = 2fx) +2A)

where g and b are nonzero real constants.

In Section 2 we soive a generalized quadratic functional
equation. In Section 3 we prove the stabiity of a
generalized quadratic functional equation. Throughout this
paper ¢ and b are nonzero real constants.

Il. A solution of a generalized quadratic
functional equation

Throughout this section X and Y will be real linear
spaces. Given a functon f:X—Y, oconsider the
following equation

@.1) azf( “a'y)+b2f( xgy) = 2/(x) +2£()

foral x, y e X.

Theorem 2.1. If a funcion f: X— Y satisfies (2.1)
foral x, ye X, then f(x) — £(0) is quadratic.

proof. We consider first the case a® + H°—4 =0 .
Puting x = y = ( in (21) we have

a* R0)+ b” A0) = 4 A0).
Hence f(0) = 0 since o® + 5° — 4 +0.
Putting y = x in (21) we have
2%\ _
22) & f(7") = 4 f(x)
for al xe X. Putting y = Q in (2.1) we have
ey PAE)+A(F) =24

foral xeX Puing x=0 ad y = x in (21)
we have

4 dAE)+ A ) = 240
for all x = X. Subtracting (2.4) to (2.3) we have
X = _—X

#A %)= )
for dl x<= X. Hence we obtain £(x) = f(—x)for
dl xe X
Puting vy = —x in (21) we have
25) b f(z—lf) = 4 Rx)
foral xe X. Puing x = 0 and y = 2x in (21)
we have
26) azf(z—a") + bzf(_—TZx) = 2 £(2x)
forall x = X. Using (22), (25), (26) and evenness of

f we have

@7 f(2x%) = 4 f(x)
foral xe X. By (22), (25), (2.7), we have
ey AE) =0 = oA F)

for al x = X. From (2.1) and (2.8) we have
Ax+y) + flx—y) =2 f(x) +2£(y)

foral x, ye X.

Now, we prove the case g° + 62 — 4 = (.

et &x) = f(x) — f(0) forall xe X.

Then Q(0) = 0 and @ satisfies (2.1).

As a similar way to the case q°> + b° — 4 =0,

we have ¢ is quadratic. 7
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. Stability of a generalized quadratic
functional equation

Let R* denote the set of nonnegative real numbers.
Recall that a funcion H: R*x R*— R* is
homogeneous of degree p> (0 if it safisfies
H(tu, tv) = t’H(u, v)for al nonnegative real
numbers ¢, wand ». Throughout this section X and
Y will be a real normed space and a real Banach
space, respectively. We may assume that K is
homogeneous of
degree p. Given a function /: X—Y , we set
DAn = [ EE2) ¢ i 552

=2f(x) —2/(y).

Theorem 3.1. Assume that 6 = 0, p e (0, «)\ {2}
andd=(0 when p>2. Let an even function
fr X—Y satisfy

31 HDRx, Il < 6+ H(IxlI, lIvl])

for al x, ye Xand f(}) = (. Then there exists a
unique quadratic function @Q: X—Y such that

62 1)~ D l<+s

for all x € X, where
(x) = 2H(|ldl, 1) + HI24], 0) .

1
+ 14— 2] h(x)

Proof. Putling y = x in (3.1) we have
B |[a2(22) = af]| < 8+ B, I

foral xe X. Puting x = 2x and y = ( in (3.1)
we have

09 [l %)+ 6 (25~

< &+ H(|12ll, 0)
foral x& X. Puing y = —x in (3.1) we have
B8 || A(F)~45@|| < 8+ HW, 1)
for al x= X since f is even. From (33), (34) and

(3.5) we have
I8 f(x) — 2 f(2x) Il <38+ h(x)
foral x= X, where

k(x) = 2H(lI«, ldl) + H(l1241, 0).
Hence, we have

88 ||fn ~ ¢ f20||= o+ L uw

for al x = X. We divide the remaining proof by two
cases.

(1) Tecase < p< 2. Using (36) we have
(37) ”ﬂi_xl EM”

4 n+1l

A(2%%) — £(2 ;Z"xz ”

1
471

1 _3_ _1 (p—2n
< 178 o+ g2 h(x)

for al x = X and all positive integers .
and (3.7) we have

(38) Hﬂ—li',:" - A2 H

_l_l_ . 3 —1_1 (p=~2)k
Szm“ g o+ 2m82 h(x)

for al x = X and all nonnegative integers # and

wth m<n .

From (36)

4n
adl x = X. Consequently, we can define a function

This show that (.Z(Z_'LQ] is a Cauchy sequence for

QX-Y by QU= lim LX)
foral xe X. Wehave Q(0) = (0 and
IDXx, Ml = lim 4 =" [l DX(2"x, 2"yl

< lim(4 "8 +2 “2=DYH(llAl, lIfl)

=0
for all x, y= X. By Theorem 2.1, it follows that @
is quadratic. Putting » = ( in (3.8) and leting 7—c0
we have (32. Now, let Q': X—>Y be another
quadratic function satisfying (3.2). Then we have
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QN =477Q2") — @ 2"l
<4 (2% — A2l
+11Q'(27%) — A2™0)I))
n(p=2)

|4 27
for all x € X and all positive integers n.

lXx) —

<47"5+ h(x)

we can condude the Xx) = Q' (x) foral xe= X
This proves the uniqueness of Q,

(2) The case p> 2. Replacng x by —g— in
(3.6) and multiplying both sides of (3.6) by 4 we have
B9 ||r0 — s =2 h
foral x = X. Using (3.9) we have
(310) 1472 ") — 4 "TIA2 T D )|

<9 —-»-1 2 (Z—D)nh(x)
for all x = X and all positive integers 7. From (3.9)

and (3.10) we have
14742 70 = ARl < 522 7+712%9 ()

for dl x e X and all positive integers %. The rest
of the proof is similar to the comesponding part of the
case ()< p< 2. O

Theorem 3.2 Assume that & = (). Let an odd function
f: X— Y satisfy

(@.11) IDACx, Wl < &+ HUlAl, lisi)
foral x, ye X. Then

(812 AN < —5 6+ bz h(x)

foral xe X, where
) = H|| 5= || 3 4]

Proof. Putting y = —x in (3.11) we have

81 |6 A(E)|| = &+ HA, 1)

for dl x< X Replacng x by 7bx in (313) and

then dividing both sides of its result by &7 yields (3.12).
U

Theorem 33. Let 6> 0 and pe<= (0, )\ {2}.
Assume that s =0 if p> 2 and

I(@®+ 8 —DADI =0 i p>2.
If a function f: X—Y satisfies 3.1) foral », yve X
then there exists a unique quadratic function @Q: X—Y
such that

819 lIAD— A0 - &l
<(§ + 7)o+ FAa + 82— ) KON

+ By (2) + # By (%)

m

a9 || AR2EA=D 50— |

2(l4 27y M@

+ L (3+1(a + 8 — ) A0
and
@1 || A A & % 5+ # ha()

for al x € X, where
hi(x) = 2H(llA, lId]) + H(lI24], 0)

and
(@ = H(]| 5 4. || $4])-
Proof. Let ¢,(x) = ﬂ!ﬁzﬂ;"l for adl xe X.

Then ¢, (0) = A0), q,(—x) = g,(x) and
I Dgy(x, »ll <o+ HAl, lIsl]) for al x yeX.
Let g(x) = ¢;(x) — (D) foral xe X.

Then ¢(0) = 0, ¢(—x) = ¢(x) and
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I Da(x, )| =1l Dg(x, ») — (a® + b — 4) RO
<[ Dgy(x, W+ 11 (@® + B> — ) AO) ||
< 8+ lI(a? + b — 4) AV + H{llAdl, 111D

foral x, ye X.
By Theorem 3.1, there exists a unique quadratic function

Q: X—Y satisfying (3.15).
Let g(x) = MLTZL‘—’Q foral xe X

Then g(—x) = —g(x) and

| Dg(x, w1 < & + Hll«f, (341
for al x, ye X. By Theorem 32, we have (3.16).
Clearly, we have (3.14) for dll x = X

Define a mapping H: R* x R*— R* by
H(a, b) = 6(a’ + #).
Then H is homogeneous of the degree p. Thus we
have the following corollaries. !

Corollary 34. Assume that § >0, p < (0, %)\ {2}
and d=(0 whenp)2.
f1 X—Y satisly

Il DAx, Il < 6+ 6(lIdl? + [I41%)
for al x, ye X ad £(0) = (0. Then there is a
unique quadratic function ¢: X— ¥ such that

A0 — @l < Lo+ AT

2(4 - 2%
foral xe= X

Let an even function

liadl?

Corollary 3.5. Assume that 8> (. Let an odd function
[+ X— Y satisfy

IDAx, »II < 8+ 6(lxd|” + lI3ll?)
foral x, y= X. Then

bb—Z
2#—1

| Ax) Il < 7}?“ 01l|?

forall xe= X.

Corollary 36. Let 6> 0 and pe (0, )\ {2)}.

Assume that § =0 i 5> 2 and
1@+ & =AM =0 p>2.
If a function f: X— Y satisfies
DA%, I < 0+ G (lldl? + A1)
for al x, ye X, then there exists a unique quadratic
funcion @Q: X—Y such that
[ Ax) — R0O) ~— A0,

< (-;— #) 8+2(lI(a° + 6 — 4) KON

bﬁ-?

4+27 »
Sy + 37 ol

[fﬂLle" T A= —f(o>—o<x)”
< %(6+ (a2 + 62 ~ AN

4+2° »
+ S

ad foral xe X

IV. Conclusion

So far we investigated a generalized quadratic functional
equation

azf(—’%l) + bzf("—;l) = 2Ax) +2A)

where g and b are nonzero real constants..

We also sove a generalized quadraic functional
equation and then prove the stability of a generalized
quadratic functional equation.

This functional equation can be used for a variety of
applications in some areas of the behavioral sciences
such as sensory psychology(psychophysics), utility theory
under uncertainty, and aggregation of inputs where proves
the stability of this equation. and outputs in an economic
or social context.
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It is expected that more functional equations in the
various forms such as exponential, logarithmic and
multiplicative functional equations would be applicable
soon.
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