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A Fast Block Sum Pyramid Algorithm
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Abstract

In this paper, a Fast Block Sum Pyramid Algorithm
(FBSPA) is presented for motion estimation in video coding.
FBSPA is based on Block Sum Pyramid Algorithm(BSPA),
Efficient Multilevel Successive Elimination Algorithms for
Block Matching Motion Estimation, and Fast Algorithms for the
Estimation of Motion Vectors. FBSPA reduces the computations
for motion estimation of BSPA 2.9% maximdly using partial
distortion efimination(PDE) scheme.

. Introduction

There is considerable temporal redundancy in consecutive
video frames. Motion estimation and compensation
techniques have been widely used in image sequence
coding schemes to remove temporal redundancy. The
accuracy and effidency of motion estimation affects the
efficiency of temporal redundancy removal.

Motion estimation methods are classified into two classes
block matching algorithms (BMA)[1],[2] and pel-recursive
algoritms (PRA)[3]. Owing to their implementation simplicity,
block matching algorithms have been widely adopted by
various video coding standards such as CCITT H.261[4],
ITU-T H.263[5], and MPEG[6]. In BMA, the curent image
frame is partitioned into fixed-size rectangular blocks. The
motion vector for each block is estimated by finding the
best matching block of pixels within the search window in

the previous frame according to matching criteria.

Atthough Full Search algorithm(FSA) finds the optimal
motion vector by searching exhaustively for the best
matching block within the search window, its high
computation cost limits its practical applications. To reduce
computation cost of FSA, many fast block maiching
agorithms such as three step search{7], 2-D log search[2],
orthogonal search[8], cross search[8], one-dimensiona full
search(10], variation of three-step search[11][12], urrestricted
cenfer-biased diamond search{13], a fast block matching
dgorithm using mean absolute emor of neighbor search point
and search region reduction[14] etc. have been developed. As
described in [15], these algorithms rely on the assumption
that the motion- compensated residual emor surface is a
convex function of the displacement motion vectors, but this
assumption is rarely true [16]. Therefore, the best match
obtained by these fast algorithms is basically a local
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optimum,

Without this convexity assumption, Successive Elimination
Algorithm(SEA) proposed by Li and Salari[17] reduces the
computation cost of the FSA. To reduce the computation
cost of SEA, Block Sum Pyrarid Algorithm (BSPA)[18] and
Multilevel Successive Elimination Algorithm (MSEA)[19] were
proposed. Our research team proposed Efficent Multilevel
Successive Elimination Algorithms for Block Matching Motion
Estimation (EMSEA)[20] to reduce the computation cost of
MSEA. The partial distorion elimination scheme of EMSEA
was improved and then the improved scheme was applied
to BSPA in FBSPA. The motion estimation accwracy of
FBSPA is identical to that of FSA and the computation cost
of BSPA is reduced using FBSPA.

ll. Block Sum Pyramid Algorithm

The SEA achieves the same estimation accuracy as the
FSA while requiring less computation ime. In SEA, the
displacement vector of the comesponding block in the
previous frame is used as the initial motion vector for the
present template blocf21]. The SEA uses the sum nom of
a block as a feature to eliminate unnecessary search points.
The sum norm of a block B of size NxN is defined as

N N
Sy=2.21BG NI

Py M
where B(, j) is the gray level of the (i, j)th pixet of block B.
Let ST be the sum nomn of the template block T, Sx be
the sum nom of a candidate matching block X, and
cur_MADmin be the cument minimal MAD during the
search process. Let MAD(T, X) be the MAD between T and
X and is defined as

MAD(T,X) = ZZlT(i,j)—X(i,j)l o
where T(, j) and X{, ) represent the gray values of the (; jth
pixels of T and X. The equation (3) was verified in [17]:

MAD(T,X)2 Y 3| 5~ 5| 3)

Based on the above inequality, the SEA discards each
candidate matching block X with [ST - SX|>curr_MADmin,
which can save a lot of search time. Block Sum Pyramid
Algorithm can eliminate those impossible matching blocks by
exploiting the sum pyramid structure of a block. An image
pyramid is a hierarchical data structure originally developed
for image coding [22]. Assume that each block is of size
NxN with N=2n. Then, for each block X, a pyramid of X
can be defined as a sequence of blocks { X0, ... , XmH1,
Xm, Xm#1, .., Xn} with Xm-1 having size 2ml x 2m
and being a reduced-resolution version of Xm as shown in
Fig. 1.

Fig. 1. A pyramid data structure

Note that X0 has only one pixel. A pyramid data structure
can be formed by successively operating over 2@
neighboring pixels on the higher levels. That is, the value of
a pixel Xm-1(i, ) on level m1 can be obtained from the
values of the coresponding 232 neighboring pixels Xmy2i-1,
2-1), Xm(2i-1, 2), Xm(2i, 2-1), and Xm(2i, 2j) on fevel m
as shown in equation (4).

X0 )=X"(21,21)+ X" 21,20+ X R 211+ X72i2))  (4)

For two blocks X and Y, let MADm(X, Y) be MAD(Xm,
Ym), i.e.,

™ g

MAD"(X,Y)=> Y1 X" (j,)-¥" (j,h)| )
Jj=l h=1

where Xm(j, h) and Ym(j, h) represent the values of the {, hjth
pixels on Xm and Ym respectively. Thus, on the top level,
MADO(X, Y)=ISX - SY|. From the above definion, the

..12_



following theorem holds.
MAD(X Y)>MAD™ (X Y) >MAD™ (X Y)> ..>MAD'(XY) (6)

Block Sum Pyramid Algorithm uses the above theorem
(6). The Block Sum Pyramid Algorithm first constructs the
sum pyramid of every block that corresponds to a search
position in the previous frame. To search for the best
matching block of a template block T, the sum pyramid of
T is established. Then, the MAD between T and the block
with displacement vector (0, 0) is evaluated, and this value
is considered as the current minimum MAD(symbolized as
curr_MADmin). For any other search block X, the algorithm
first checks the MAD on the top level, MADO(T, X). If the
calculated MADO(T, X) (symbolized as cal_MADO(T, X))
meets the equation (7) then this block can not become the
best matching block. So, this block can be eliminated. If
MADO(T, X) does not meet the equation (7), the MAD on
the first level is checked.

cur_MADri, < cal MAD(X,Y) m

If the calculated MADI(T, X) meets the equation (8), for
the same reason above, this block can be eliminated. If it
is not, the second level is tested.

cur MAD, < cal MAD'(XY) ®

The process is repeated until this block is eliminated or the
bottom level is reached. If the bottom level is reached, then
MAD(T, X) is calculated and checked. i MAD(T, X)<
curr_MADmin, the current minimum distortion curr_MADmin
is replaced with MAD(T, X). Block Sum Pyramid Algorithm
can eliminate many search blocks without evaluating their
MADs. Assume that the size of the image frame is WxH.

For each level of the pyramid, calculation of the sum of
22 neighboring pixels requires 3(W-1)(H-1) additions.
However, using the idea for fast calculation of the sum
norm developed in [17], the complexity can be reduced to
be (2W-1)(H-1) additions for each level. If the block size is
16x18, i.e., N=16, the overhead for constructing the sum
pyramid is 4(2W-1)(H-1). Since there are (WN)(HIN)
template blocks in an image frame, the computation

overhead for each template block is expressed as equation
(9).

ARV (H)(WMN(HN]=N* B4 W HYWH ~BN*  (9)
lil. Fast Block Sum Pyramid Algorithm

The BSPA speeds up the process of finding the best
motion vector by eliminating impossible candidate vectors
before their MADs are computed. Patial distortion
elimination (PDE)[21} can be used in with BSPA fo reduce
the computation further for these vectors where the nom
[T(i,i)-X(i,)| must actually be computed. PDE is an effective
speed up technique used in vector quantization to find a
best reconstruction vector from a set of vector code words.

We observe that since all of the terms in the equation (2)
are positive, if at any point the parfially evaluated sum
exceeds the curent minimum MAD{curr_MADmin), that
candidate block X cannot be the best matching block and
the remainder of the sum does not need to be calculated.
While it is not efficient to test the partial sum against the
curr_MADmin every additional term is added, a reasonable
compromise is to perform the test after N times additions
when block size is NxN as shown in Fig. 2. So, the
maximum number of PDE fest is N.

In BSPA, MAD is calculated al the NxN pixels and then
the calculated MAD is compared with curr_MADmin,

123 N
1
2 (XY
3
[ .
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. )
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N

Fig. 2. PDE test in MAD calculation

FBSPA procedure is as follows:
step 1 select an iniial search block within the search
window in the previous frame.
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step 2 calculate the motion vector (MV) and the MAD at
the selected search block. these MV and MAD
become he cument temporary motion vector and the
current  minimum MAD respectively (temp_MV=MV,
curr_MADmin= MAD)

step 3 select another search block among the rest of the
search blocks

step 40 calculate the MADO(T, X) at the selected search
block. if (cur_MADmin < MADQ(T, X} goto step6

step 4.1 calcuate the MADI(T, X) at the selected search
block. if (cur_MADmin < MADI(T, X)) goto step6

step 4.(n-1) calculate the MAD(N-1)(T, X) at the selected

search block.
if (cur_MADmin < MAD(n-1)(T, X)) goto step6

step 4.n calculate the MAD at the selected search block for
N pixels.

if (cur_MADmin < MAD) goto stepb

else if MAD is not calculated for all pixels(NxN) then goto
step 4n

step 5 cur_MADmin=MAD

calculate the motion vector at the selected search  block.
This motion vector becomes the current temporary
motion vector (temp_MV=MV)

step 6 if (all the search blocks in the search window are
not tested?) goto step3

step 7 the optimum motion vector =temp_MV,

the global minimum MAD= curr_MADmin

IV. Experimental Results of Fast Block Sum
Pyramid Algorithm

The experiments were perormed on several typical
QCIF(176x144) test sequences in the framework of the
H.263 such as “grandma.qcif’, “suzie.qdf’, “dlaire.qcf”. We
tested 100 frames of the sequences. The block (Y
component of the macroblock in H.263) size and the size of
motion vector search windows for full pixel searching are

16x16 pixels (N=16) and 31x31 pixels (M=15) respectively
and only integer values for the motion vectors were
considered.

Experimental results are shown in table 1. In table 1,
me. means matching evaluation that require MAD
calculation, avg. # of rows means the number of calculated
rows in the MAD calculation before partial distortion
elimnation. Overhead(in rows) is the sum of al the
computations except MAD calculation. “in rows” means that
the computations are represented in order of 1 row MAD
computations.

It is important to notice that with the BSPA, the efficiency
of the procedure depends on the order in which the
candidate motion vectors are searched, and that the most
promising candidates should be tested first. This eliminates
the maximum number of candidates. In our experiment, we
used spiral search.

The FBSPA which incorporates the BSPA with PDE,
reduces the computations of BPSA by 2.9%, 2.8%, 2.2% for
grandma.qcif, suzie.acif, and daire.qcif respectively.

Table 1. The computations of FBSPA

Ngo- | Test |Avg #of :"3 Ovehead| Toid | °
ritm | sequence | me.fframe rows/me (in rows) | (in rows) ] )
grandma | 3507 16.00 | 29,749.3 | 35360.5

BSPA | suzie 6071 16.00 | 27,6205 | 37,3341
daire 2283 16.00 | 17,920.8 | 21,5736
grandma |  350.7 1312 | 29,7493 [ 34,3505 29%
FBSPA| suzie 607.1 1425 | 276205 [ 36271.7| 28%
daire 228.3 1389 | 17,9208 [ 21,0919 | 22%

V. Conclusions

A Fast Block Sum Pyramid Algorithm based on BSPA
has been proposed to reduce the computations of BSPA for
motion  estimation in video coding. Partial distortion
elimination scheme used in EMSEA was improved and then
the improved PDE scheme was applied to BSPA. The
FBSPA can find the global optimum solution in the same
way that FSA can. And FBSPA can reduce the
computations of block matching calculation of BSPA 2.9%
maximally,. FBSPA is a very efficent solution for video
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coding applications that require both very low bit-rates and
good coding quality.
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