ALMOST EVERYWHERE CONVERGENCE THEOREM FOR
SEMINORMED FUZZY CO-INTEGRALS
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Abstract

In this paper, an almost everywhere convergence theorem for seminormed fuzzy co-integrals
is showed provided that the fuzzy measure is null-additive.
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that the fuzzy measure is null-additive.

l. Introduction

Almost everywhere convergence theorem I, The Seminormed Fuzzy Co—-integrals
holds for a sequence of bounded Lebesgue
integrable functions. This theorem also holds for Let X be a nonempty set, 4 be a o-algebra
seminormed fuzzy integrals provided that the

of subsets of X. A set function g : o
fuzzy measure is null-additive[5). In [1], the

— [0, 1] is called a fuzzy measure on A if
1) @) =0, gX) =1

(2) (monotonicity) A, Bed with AcB

seminormed fuzzy co-integral was introduced as
a complementary concept of seminormed fuzzy

integral, and an application for decision making

problems was proposed. implies g(A) < g(BY;
The purpose of this paper is to show that (3) (continuity from below) {A,)ed
almost everywhere convergence theorem for - A CA,C - imply

seminormed fuzzy co-integrals holds provided
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lining(A”) = g(U%-14.);
(4) (continuity from above) {A,} e d
A DA, D and g(4)) < o imply

lim g(A,) = &N =14,

We note that if a fuzzy measure g is both
continuity from below and continuity from

above, then g is called a continuous fuzzy
measure,

We call (X,4, g) a fuzzy measure space if
g is a fuzzy measure on .

A fuzzy measure g is called null-additive if
gAUB) = g(A)
whenever
A, Bed, ANB=®,and g(B) = 0.

Note that classical

null-additivity for the countable additivity.

measures  satisfy

Let B is the o-algebra of Borel subsets of
[0, 1], and 4 a measure for X. A real-valued
function 4: X— [0, 1] is (4, B) -measurable

(i.e, measurable with respect to ¢ and B) if
hUB) = x| hx)eBle 4

for any B e B. We shall say measurable for

(o, fB) -measurable if there is no confusion

likely. From now on, we consider only the set
LY(X)={h:X—1[0,1]1 | h is measurable

with respect to £ and B },

For any given ke L%X) and e < [0, 1],

we write

H,= {xe X| hx) =z a},
H* = {xe X | hx) < a}.

Definition 2.1.([3D) A function
T:[0,11%x[0,11—1[0,11 is

t-seminorm if it satisfies:

called a

1) T(x,1) = T7(1,x) = x, for each
xe [0,1],

(2) if x,<x4, x9< x, for each
%y, x5 %3 %4 € [0, 1], then

T (%, x9) € T (x5 %)

There exists a concept of t-semiconorm L1
defined by

1(x,y)=1—-T0—x,1-v)

for seminorm T.

A t-semiconorm is a function

1:[0,11x[0,1] — [0, 1] which satisfies :

(1) L(x,0) = L(0,x) = x for each
x<[0,11,

2) if x,<xj3, xy< x4 for each
Xy, %y, %3 %4 € [0, 11, then

1 (xy %) < L(x3 x4).

Cleary, T(x,0) = T(0,x) = 0 and
1(x,1) = L(1,») = 1.

Definition 2.2.([3) Let Ae o he LYX).
The seminormed fuzzy integral of h on A with

respect to g is defined by
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fAh Tg: sup ae [0, I]T[d, g(AﬂHa)]

When A = X, the seminormed fuzzy integral is

denoted by / hTg. Cleary, the seminormed

fuzzy integral is the fuzzy integral for the case

T (z,y) = (z Ay) 6D,

Definition 2.3.([1]) Let Aed, he LUX).

The seminormed fuzzy co-integral of % on A,

with respect to g is defined by

(co) fAh Tg
= inf ae (0, 1]—L [ (1 "‘“a’) , g(AmHQ)]

When A=X, the seminormed fuzzy co-integral

is denoted by (co) f hTg.

Definition 2.4. Let (X,A,g) be a fuzzy

measure space, and A 4 . A property P holds

almost everywhere on A if the set of points of A
where P fails to hold has fuzzy measure zero.

For the Lebesgue integral, if %, = h, almost

everywhere on A, then f hdu= / hdu. Also,
A P

we have the following theorem for the

seminormed fuzzy co-integral.

Theorem 2.5. Let (X, 4, g) be a fuzzy measure
space, Aed, and hy, hye LYX). If h = h,

almost everywhere on A and g is null-additive

then,

quMTg=wq£@Tg

Proof. Let

A1=ANked: b (X)=h,(x)}
and H{={xeX| h(x) a}.
Then

g(A—-A)=0,
and hence
g(A-A DNH)N=0
by the monotonicity of g.
Since ¢ is null-additive and

ANH{=A NHEDU(A-ADNHY),
g(A NHD=g(A NH?.

Hence

(co) [ ki Tg = inf ooy L[(1—a), lANHY)
=inf ,eqo L[ (1 —a), g(A  NHD]
=(co) fA h,Tg

Similarly, we can show that
()| hTo=()[ b
A A,
Therefore

(co)/;1 thgz(co)‘/:4 h,Tg

since hy = hy on A,. o

Corollary 2.6. Let (X,d,g) be a fuzzy
measure space and h € L°(X). If A, € A and

g(A—A;)=0. Then

(co)fA h Tg=(co)/A‘h Tg.
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Theorem 2.7.(11)) Let (X,d,g) be a fuzzy

measure space. If & <h,, then

(co)/A h,Tg= (co)/A h,Tg.

I, Almost Convergence Theorem for
Seminormed Fuzzy Co-integrals

In Classical measure theory, there are the
monotone convergence theorem, the uniform
convergence theorem and so on, all of which are
well known. For the fuzzy integral sequence,
there are a lot of convergence theorems as well.
In this

theorems of fuzzy integal sequence under some

section, we will two convergence

conditions. In these theorems, we will use a

»n

symbol "N\" (or ”,7") to denote "decreasing

converge to” (or "increasing converge to” ) for

both function sequences and number sequences.

Theorem 3.1.([11) (Monotone Convergence

Theorem) Let (X,d,g) be a fuzzy measure

space, T be a continuous t-seminorm. If 2\
on A, (orifh, k)
Then

(co)fA h,Tg/ (co)/A h Tg

(or (co)/ h,Tg (co)/ h Tg.
A A

Now we give an almost everywhere

convergence theorem for seminormed fuzzy

co-integral.

Theorem 3.2 Let (X,d, g) be a fuzzy measure
t-seminorm, and g

to h

a continuous

It h,

space, T

null-additive. converges almost

everywhere on A, then

in ()] mTo=()] hTo
Proot. Let
A =AN €Ak (x)—h(x)}.
Then g(A—A )=0.
And for any * € Ay, inf, . h(z) "h(z) and
sup, s (@) Nh(z).
We have

(co) [ | inf b s TeNCe) [ 1 T

and (co)f supy, s JuTg/” (co)/ h Tg
4, - A,

by Theorem 3.1.

Since

infk;nhk(z) = hn(ﬂf) = Squgnhk(l')

for any £ € A; and n € N, it follows that

(co)fAlmf a7 2(co)fAlh,,Tg
2(co)fAlsup b T8

by Theorem 2.7.
Hence,

lm (co) | h,Tg=(co) f h Tg.
4 4

T=-200

Note that
() [ B Tg=(e0) [ h,Tg
A A,

and

(co)/A h Tg=(co)/A‘h Tg
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by Corollary 2.6.
Thus, we have

lim (co)fAh,,Tg=(co)fAh Tg [

10

Corollary 3.3. Let (X,sd,g) be a fuzzy

measure space, T a continuous t~seminorm and
g null-additive. If h,, converges to h on A, then

i (c0) fA h Tg=(co) /A hTg.
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