
분산 이동 시스템에서 선출 프로토콜의 설계
Design of an Leader Election Protocol in Mobile Ad Hoc Distributed Systems

박성훈

충북대학교 전기전자컴퓨터공학부

Sung-Hoon Park(spark@cbnu.ac.kr)

 요약

   
선출 프로토콜은 프로세스들의 그룹 통신, 데이터베이스의 원자성 완료와 복제된 데이터의 관리 등의 

조정자(coordinator)가 이용 될 수 있는 많은 실질적인 문제를 해결하는데 하나의 기본적인 구성 요소로 

이용 될 수 있다. 이 문제는 여러 연구단체에서 포괄적으로 연구 되어왔던 바, 이렇게 주된 연구 관심 영역

이 된 하나의 이유는 많은 분산 프로토콜들이 하나의 선출 프로토콜을 필요로 하기 때문이다. 그러나 이러

한 유용성에도 불구하고, 우리가 알기에는 이동 분산 컴퓨팅 환경에서 이러한 문제를 다룬 연구는 아직 

없었다. 이동 분산 시스템은 기존의 분산 시스템 보다 훨씬 더 실패(failure)의 가능성이 높다. 그러한 환경

에서 다수의 움직이는 노드들(nodes)로부터 선출의 문제를 해결하는 것은 움직이는 노드의 많은 실패

(failure)에도 불구하고 하나의 모바일 노드가 우선순위에 의하여 리더로 선출 될 수 있도록 하는 것이다. 

본 논문에서는 이동 분산 컴퓨팅 시스템에서 선출 문제에 대한 하나의 해결 방안을 제시 한다. 이 해결 

방안은 Group Membership Detection 알고리즘에 바탕을 두고 있다. 

 ■ 중심어 :∣이동 분산 컴퓨팅∣동기적 분산 시스템∣리더 선출∣고장 감내 시스템∣

Abstract

The Election paradigm can be used as a building block in many practical problems such as 

group communication, atomic commit and replicated data management where a protocol 

coordinator might be useful. The problem has been widely studied in the research community 

since one reason for this wide interest is that many distributed protocols need an election 

protocol. However, despite its usefulness, to our knowledge there is no work that has been 

devoted to this problem in a mobile ad hoc computing environment. Mobile ad hoc systems are 

more prone to failures than conventional distributed systems. Solving election in such an 

environment requires from a set of mobile nodes to choose a unique node as a leader based on 

its priority despite failures or disconnections of mobile nodes. In this paper, we describe a 

solution to the election problem from mobile ad hoc computing systems. This solution is based 

on the Group Membership Detection algorithm.

 ■ keyword :∣Election Algorithm∣Failure Detector∣Concurrency Control∣Distributed Systems∣

 

    

* 본 논문은 2007학년도 충북대학교 학술연구지원 사업에 연구비지원에 의하여 연구되었습니다.  

접수번호 : #081105-001

접수일자 : 2008년 11월 05일

심사완료일 : 2008년 12월 04일

교신저자 : 박성훈, e-mail : spark@cbnu.ac.kr

 



한국콘텐츠학회논문지 '08 Vol. 8 No. 1254

1. Introduction

In recent years, several paradigms have been 

identified to simplify the design of fault-tolerant 

distributed applications in a conventional static 

system. Election is among the most noticeable, 

particularly since it is closely related to group 

communication [7], which (among other uses) 

provides a powerful basis for implementing active 

replications. The Election problem [1] requires that a 

unique coordinator be elected from a given set of 

processes. 

The problem has been widely studied in the 

research community[2-6] since one reason for this 

wide interest is that many distributed protocols need 

an election protocol. However, despite its usefulness, 

to our knowledge there is no work that has been 

devoted to this problem in a mobile ad hoc computing 

environment. When nodes are mobile, topologies can 

change and nodes may dynamically join/leave a 

network. In such networks, leader election can occur 

frequently, making it a particularly critical component 

of system operation. 

Mobile ad hoc systems are more often subject to 

environmental adversities which can cause loss of 

messages or data [8]. In particular, a mobile node can 

fail or disconnect from the rest of the network. 

Designing fault-tolerant distributed applications in 

such an environment is a complex endeavor. Leader 

election algorithms for mobile ad hoc networks have 

been proposed in [9][10]. As noted earlier, we are 

interested in an extrema-finding algorithm, because it 

is desirable to elect a leader with some 

system-related attributes such as maximum battery 

life or maximum computation power. The algorithms 

in [9] are not extrema-finding and cannot be extended 

to perform extrema finding. Although, 

extrema-finding leader election algorithms for mobile 

ad hoc networks have been proposed in [10], these 

algorithms are unrealistic as they require nodes to 

meet and exchange information in order to elect a 

leader and are not well-suited to the applications 

discussed earlier. Several clustering algorithms have 

been proposed for mobile networks [11][12], but these 

algorithms elect cluster-heads only within their single 

hop neighborhood. 

The aim of this paper is to propose a solution to the 

election problem in a specific ad hoc mobile 

computing environment. This solution is based on the 

group membership detection algorithm that is a 

classical one for synchronous distributed systems. 

The rest of this paper is organized as follows: Section 

2 describes the mobile system model we use. In 

Section 3, a solution to the election problem in a 

conventional synchronous system is presented. A 

protocol to solve the election problem in a mobile ad 

hoc computing system is presented in Section 4. We 

conclude in Section 5.

2. Model and Definitions

Before developing a leader election algorithm for 

ad-hoc computing environments, we first define our 

system model based upon assumptions and goals. We 

model an ad hoc network as an undirected graph, i.e., 

G = ( V, E ), where vertices V correspond to set of 

mobile nodes {1, 2,…,n} ( n >1 ) with unique 

identifiers and edges E between a pair of nodes 

represent the fact that the two nodes are within each 

other’s transmission radii and, hence, can directly 

communicate with one another that changes over time 

as nodes move. Each process i has a variable Ni, 

which indicates the neighboring nodes, with that i can 

directly communicate the neighboring nodes. We 

assume that every communication channel is 

bidirectional; j∈ Ni iff i∈ Nj. More precisely, in the 

network G = ( V, E ), we can define E such that for 



분산 이동 시스템에서 선출 프로토콜의 설계 55

all i∈V, (i, j) ∈ E if and only if i∈Nj. The graph can 

become disconnected if the network is partitioned due 

to node movement. Because the nodes may change 

their location, Ni may be dynamically changed and so 

may G accordingly. We make the following 

assumptions about the nodes and system architecture: 

- Each node has a weight value Wi associated with 

it. The value of a node indicates its "priority" as a 

leader of the system and can be calculated upon some 

criteria such as the node’s battery power, the position 

where the node’s distance from other nodes is 

minimal, computational capabilities etc.

- All nodes have unique identifiers. They are used 

to identify participants during the election process. 

Node IDs are used to break ties among nodes which 

have the same value.

- Links are bidirectional and FIFO, i.e. messages 

are delivered in order over a link between two 

neighbors. 

- Node mobility may result in arbitrary topology 

changes including network partitioning and merging. 

Furthermore, nodes can crash arbitrarily at any time 

and can come back up again at any time. 

- A message delivery is guaranteed only when the 

sender and the receiver remain connected (not 

partitioned) for the entire duration of message 

transfer. Each node has a sufficiently large receive 

buffer to avoid buffer overflow at any point in its 

lifetime. 

The objective of our leader election algorithm is to 

ensure that after a finite number of topology changes, 

eventually each node i has a leader which is the 

most-valued-node from among all nodes in the 

connected component to which i belongs. 

3. Leader Election Algorithm in a 

   Static Network 

In this section, we describe a leader election 

algorithm based on group membership detection 

algorithm, simply GMDA, by diffusing computations. 

In later sections, we will discuss in detail how this 

algorithm can be adapted to a mobile setting.

3.1 Leader Election in a Static Network

We first describe our election algorithm in the 

environment of a static network, where we assume 

that nodes and links never fail. The algorithm 

consists of two phases operated at the node that 

initiates the election algorithm. 1) Scattering phase - 

it operates by first "scattering the election message" 

and 2) Gathering phase - it operates by then 

"gathering the id of each node" that is connected to 

the static networks. We refer to this 

computation-initiating node as the source node. As 

we will see, after gathering all nodes’ ids completely, 

the source node will have the information enough to 

determine the most-valued-node and will then 

broadcast its identity to the rest of the nodes in the 

network. The algorithm uses three messages, i.e., 

Election, Ack and Leader.

1) Scattering phase. Election messages are used to 

initiate the election by "scattering" the election 

message. When election is triggered at a source node 

s (for instance, upon crash or departure of its current 

leader), the node makes a waiting list wl and a 

received list rl and begins a diffusing computation by 

sending an Election message to all of its immediate 

neighbors. Initially the waiting list consists of only its 

immediate neighboring node’s ids and the received list 

consists of an empty list. Every node i other than the 

source propagates the Election message to all of its 

neighboring nodes except the node from which it first 

received an Election message.

When node i receives an Election message from the 

neighboring node for the first time, it immediately 



한국콘텐츠학회논문지 '08 Vol. 8 No. 1256

sends the Ack message to the source node. The Ack 

message sent by node i to the source node contains 

the ids of all its neighboring nodes that is needed for 

the source node to elect a leader.

2) Gathering phase. When the source node receives 

the Ack message from the node j, it removes j from 

the waiting list and puts j into the received list and 

immediately checks one by one the every node id 

contained in the Ack message. If there is any id in the 

Ack which has already been acknowledged, i.e.  that 

means it is in the received list, it is discarded. 

Otherwise, it is put into the waiting list of source 

node and the source node waits the Ack message 

from it. The waiting list is growing and shrinking 

repeatedly based on the received Ack messages, but 

the received list steadily growing by receiving the 

Ack messages. But eventually the waiting list could 

be empty and the received list could include all ids of 

nodes connected to the networks when the source 

node received the Ack messages from all other nodes. 

Hence the source node eventually has sufficient 

information to determine the most-valued -node in 

the received list, because the waiting list could be 

eventually empty and it means that the source node 

has received the Ack messages from all the nodes. 

3) Completing Phase. Once the source node has 

received Acks from all other nodes, it determines the 

most-valued-node as a leader among the received list 

and broadcasts a Leader message to all other nodes 

announcing the identity of the leader. 

We illustrate a sample execution of the algorithm. 

We describe the algorithm in a somewhat 

synchronous manner even though all the activities are 

in fact asynchronous. Consider the network shown in 

[Figure 1(a)]. In this figure, and for the rest of the 

paper, thin arrows indicate the direction of flow of 

Election messages and dotted arrows indicate  the 

direction of flow of Ack messages to the source node. 

The number adjacent to each node in [Figure 1(a)] 

represents its value. As shown in [Figure 1], node A 

is a source node that initializes wla and rlb with {B,C} 

and {A} respectively and starts a diffusing 

computation by sending out Election messages 

(denoted as "E" in the figure) to its immediate 

neighbors, viz. nodes B and C, shown in [Figure 1(a)].

As indicated in [Figure 1(b)], nodes B and C in turn 

propagate the Election message to its immediate 

neighbors only except the source node and send the 

Ack message with neighboring node list to the source 

node A. Hence B and C also send Election messages 

to one another. But the Election messages are not 

acknowledged to the source node since nodes B and 

C have already received Election messages from the 

source node respectively. The information about 

neighboring node is piggybacked upon the Ack 

message sent by each node. Upon received Ack 

messages from B and C, node A updates wla = { B,C 

}, rlb = { A } with the neighboring node information 

piggybacked on the Ack messages.

Figure 1. An execution of leader election 

algorithm based on the group membership 

detection algorithm. Arrows on the edges 

indicate transmitted election messages, while 

dotted arrows parallel to the edges indicate 

Ack messages. 



분산 이동 시스템에서 선출 프로토콜의 설계 57

In [Figure 1(c)], the node D and F also send the 

Ack messages to the sources node when they 

received the Election messages from the B and C 

respectively. Each of these Ack messages contains 

the identities of the neighbor and its actual value. 

Eventually, the source A hears all acknowledgments 

from all of other nodes except itself in [Figure 1(d)] 

and then decides the most-valued node among them 

and broadcasts the identity of the leader, D, via the 

Ldr message shown in [Figure 1(d)].

4. Leader Election in a Mobile, Ad 

   Hoc Network 

In this section, we redesign the leader election 

algorithm presented above and describe the operation 

of the leader election algorithm in the context of a 

mobile, ad hoc network. In the previous section, we 

described the leader election algorithm in a static 

network. But with the node mobility, node crashes, 

link failures, network partitions and merging of 

partitions, the simple LE algorithm presented in the 

previous section is inadequate. Furthermore, we 

assumed in the previous section that only single node 

knows as an external input the leader crash or failure, 

departure and it initiates the election protocol. In 

reality, such an assumption is inadequate, because 

many nodes concurrently can receive such inputs and 

each of them starts a leader election protocol 

independently. It results from the lack of knowledge 

of other computations that have been started by other 

nodes. We assume that the value of the node is the 

same as its identifier. This assumption has been made 

only for simplicity of presentation without loss of 

generality. 

Before we formally specify our algorithm and 

describe it in detail, we briefly introduce notation used 

in our algorithm specification and the execution 

model.

4.1 Algorithm Performed By the Nodes

In this clause, we describe the exact algorithm 

performed by an arbitrary node i. The exact 

algorithm is shown in [Figure 2]. The LeaderElection 

module on every node loops forever and on each 

iteration checks if any of the actions in the algorithm 

specification are enabled, executing at least one 

enabled action on every loop iteration. The 

bootstrapping of election module involves assigning 

values variables in line 1-5 of [fig. 2] as specified in 

the initialization part of the LeaderElection module. 

1. numi:= 0; ldri := null;

2. statusi : = Norm; one of states in {Norm, Elect, 

Wait}

3. ni := {set of all neighboring processes};

4. cli := { i };  wli := { };

5. e_num : = null;  k : = null; 

6. On statusi = Norm: 

7.   if no_signal from ldri then 

8.     statusi := Elect; 

9.     mumi := mumi +1;  

10.    send election(mumi) to each process 

           of ni end-if

11. Upon received election(m) from process j: 

12.     statusi = Wait; 

13.     e_num : = m; k : = j; 

14.     send election(m) to each process 

15.            of ni except j:

16.     send ack(ni) to processes j

17. On statusi = Elect :  



한국콘텐츠학회논문지 '08 Vol. 8 No. 1258

18.   Upon received ack (q) from process j :

19.     wli : = wli – { j }

20.     cli := cli∪{ j } 

21.     wli := wli∪{ q - { q ∩ cli } }

22.     if wli = empty then checklist(); 

           end-if 

23.  Upon received election(r) from process j:

24.     if { (mumi, i) < (r, j) } then

25.      send election(r) to each process of ni 

26.      send ack(ni) to processes j

27.      e_num : = r; k : = j  

28.      statusi := Wait; end-if

29. On status = Wait :

30.   Upon received leader(t) from process j: 

31.      ldri := t ;

32.      send leader(ldri) to each process of 

              ni except j ;

33.      statusi := Norm;

34.  Upon received election(r) from process j:

35.   if { (e_mum, k) < (r, j) } then

36.     send election(r) to each process of ni; 

37.     send ack(ni) to processes j 

38.     e_num : = r k : = j 

39.     end-if

40. Checklist() :  

41.   ldri := max (cli);

42.   send leader (ldri) to each process of ni;

43.   statusi:= Norm;

Figure 2. A leader election algorithm in mobile 

ad hoc computing environments based on the 

group membership detection algorithm.

1) Initiate Election

The leader of a connected component periodically 

sends a heartbeat messages to other nodes. The 

election process is triggered in node i when it doesn’t 

receive the messages from the leader due to its 

departure or crash, as denoted by line 7-8 in the 

algorithm of [Figure 2]. As described in section 3, 

node i starts the process of scattering an election 

message. That is it begins a diffusing computation by 

sending an Election message to all of its immediate 

neighbors, informing them the starting of an election 

process for a new leader. At triggering a new 

election, node i sets its variable status to "Elect" to 

indicate that it is in the mode of an election. In the 

election mode, node i waits until it hears the Ack 

messages from all the connected nodes to which it 

sends an election message. The list wli is, therefore 

initialized to Ni, i’s current neighbors. It is denoted in 

line 8-10 and 17 of [Figure 2].

2) Detecting all Nodes connected Networks 

Node j, upon receiving an election message from i, 

sends an Ack message piggybacked with its 

neighbors id and weight to the node i and propagates 

Election messages to its own neighbors in the set nj. 

Node i, upon receiving an Ack message from node j, 

puts it into the set of confirmed node list cli and 

inserts into the waiting list wli the piggybacked 

neighbors which are in ni. Therefore, node i knows 

that all nodes connected to network are detected 

when the cliis empty. It is denoted in line 18-22 of 

[Figure 2]. 

3) Decide New Leader

When the waiting list wli is empty, node i knows 

that it received the Ack messages from all connected 

nodes and it decides a new leader based on the nodes 

weight among the set of confirmed node list cli that 

consists of the acknowledged nodes. The exact 

process to decide new leader is described in line 22 

and 40-43 of [Figure 2]. As described in line 17-18 of 

[Fig. 2], after hearing all Ack messages from the 



분산 이동 시스템에서 선출 프로토콜의 설계 59

nodes in the waiting list wli, node i announce the new 

leader to other nodes and other nodes received the 

leader messages from node i set its variable ldr to 

the new leader’s id by which they know who the 

current leader is. 

4) Handling Multiple, Concurrent Computations

It is obvious that more than one node can 

concurrently detect leader’s departure and each of 

them can initiate diffusing computations 

independently leading to concurrent diffusing 

computations. Since each of these computations has 

the same goal, i.e. to elect a new maximum identity 

leader, we need to minimize this duplication of effort. 

Furthermore, the outcome of election is not affected 

by the identity of the node that initiated the 

computation and a node has to unnecessarily maintain 

a large amount of state if it participates in multiple 

diffusing computations at the same time. We, 

therefore, handle multiple, concurrent diffusing 

computations by requiring that each node participate 

in only a single diffusing computation at any given 

time. In order to achieve this, each diffusing 

computation is assigned, what we call, a 

computation-index. This computation-index is a pair, 

viz. <num, id>, where id represents the identifier of 

the node which initiated that computation and numis 

integer, which is described below. 

Definition: <num1, id1> > <num2, id2> <==> 

((num1 > num2) ∨ ((num1 = num2) ∧ (id1> id2)))

A diffusing computation A is said to have higher 

priority than another diffusing computation B iff : 

computation-indexA > computation-indexB.

When a node participating in a diffusing 

computation hears another computation with a higher 

priority, then the node stops participating any 

furtherits current computation in favor of the higher 

priority computation. It is described at line 23-26 and 

34-37 of [Figure 2].

5) Handling Node Partitions

Once node j receives an Election messages from 

node i, it must sends the Ack message to the node. 

But because of node mobility, it may happen that 

node j, which should yet report an Ack message to 

node i, gets disconnected from it. Node i must detect 

this event, since otherwise it will never report an Ack 

message to node iand therefore, no leader will be 

elected. In this case, node i send an Election message 

to the node j again and wait an Ack message for a 

certain timeout period. If node i does not received Ack 

message from the node for those period, then it 

removes the node from the list wli since the node gets 

disconnected or crashes. It is described at line 23-26 

and 34-37 of [Figure 2].

4.2 Proof of Correctness

The specification for leader election is consisted of 

two parts. One is safety and the other is liveness. To 

verify the correctness of leader election algorithm, the 

algorithm should be satisfied with both of safety and 

liveness properties. The safety requirement asserts 

that all the nodes connected the system never 

disagree on the leader when the nodes are in a state 

of normal operation. The liveness requirement asserts 

that all the nodes should eventually progress to be in 

a sate of normal operation in which all nodes 

connected to the system agree to the only one leader. 

As described in [Fig 2], each node of system has a 

local variable ldr indicating its leader. Since it is 

impossible to make all nodes change their local 

variable ldr simultaneously, each node uses a variable 

status to reserve the status of system during the 

process changing their leader. If status equals Norm, 

the node is normal mode of operation and the value of 

ldr is significant; if status has any other value, the 



한국콘텐츠학회논문지 '08 Vol. 8 No. 1260

node is in a process of a new leader’s being elected. 

We require those nodes to agree to a leader only 

among nodes whose status is Norm. We use 

subscripts to distinguish local variables of different 

nodes; for example, ldri and statusi are local variables 

for node i. 

The safety property of the system with n nodes is 

specified using those local variables. At all times, for 

all operational nodes i and j, if statusi = Norm and 

statusj = Norm, then ldri = ldrj. Let’s specify the 

safety property form ally as a following formula 

SLE1.

SLE1: ( ∀i,j : 1 ≤ i,j ≤ n : (statusi=Norm  ∧

statusj=Norm) => (ldri = ldrsj)) 

The liveness requires that the system eventually 

progress to a stable state in which the leader is 

operational and all operational nodes are in the normal 

state in which they have its status variable with 

Norm. Such a state is characterized by using the 

predicate ldrElected, defined as below.

Definition: ldrElected ≡ (∀i : 1 ≤ i ≤ n : ldri = 

j ∧ (statusi = Norm))) 

Repeated failure and disconnection of nodes will 

prevent the system from entering the stable state. If 

there is a period such that there are no more failure 

and disconnection, the liveness property with 

ldrElected means that a state unsatisfied with 

ldrElected eventually(◇) enter to the state satisfying 

ldrElected. Let us define this formally as a formula 

SLE2.

SLE2:  ldrElected => ◇ldrElected

SLE2 means that for a given system, there exists 

a constant c such that if no failures or disconnections 

occur for a period of at least c, then by end of that 

period, the system eventually(◇) reaches a state 

satisfying ldrElected. Furthermore, the system 

remains in that state as long as no failures or 

disconnections occur.

Proof of SLE1(Proof by contradiction). Let’s 

assume following formula, which is the case that 

there exist two nodes i, j on the system whose states 

are Norm and have different leaders. 

(Statusi = Norm ∧ Statusj = Norm)  (ldri =i∧ ldrj 

= j) ∧ (i ≠ j)         

This formula is to be true, at least two nodes in the 

systems, node i and j, should have detected the 

leader’s failure or disconnection and entered into the 

"Elect" mode respectively when the leader had been 

crashed or disconnected. Each of nodes i and j should 

choose itself as a most-valued node respectively in 

order to declare itself as a leader. But in each election 

round, only one node has the most value and it would 

be selected as a leader. Thus it is contradiction. 

Proof of SLE2 (By contradiction) a non-progress 

means that the new leader is not elected forever even 

though there is no leader therefore, no leader 

messages must be sent to all nodes. Let us assume 

that the leader has failed. Because the number of 

nodes is finite and at least one node is alive, there 

must be at least one process that detected the leader’s 

disconnection and started the election procedure. 

Eventually the node receives the Ack messages from 

all other nodes and decides most-valued node as a 

new leader. Therefore, it is contradiction.  

5. Concluding Remarks

In this paper, we proposed an asynchronous, 

distributed leader election algorithm for mobile, ad 

hoc networks and showed it to be correct. We 

formally specified the property of our leader election 

algorithm using temporal logic. We have assumed the 

ad-hoc network topology is dynamically changing 

and nodes are frequently connected and disconnected 

over the networks. With this approach, the leader 



분산 이동 시스템에서 선출 프로토콜의 설계 61

election specification states explicitly that progress 

and safety cannot always be guaranteed. In practice, 

our requirement for progress is that there exists a 

constant c such that if connection or disconnections 

occur for a period of at least c, then by end of that 

period, the system reaches a state satisfying a leader 

elected. Furthermore, the system remains in that state 

as long as no failures or disconnections occur. 

In fact, if the rate of perceived a leader failures in 

the system is lower than the time it takes the protocol 

to make progress and accept a new leader, then it is 

possible for the algorithm to make progress every 

time there is a leader failure in the system. 

In real world systems, where process crashes 

actually lead a connected cluster of processes to share 

the same connectivity view of the network, 

convergence on a new leader can be easily reached in 

practice. However, the algorithm should work 

correctly even in the case of unidirectional links, 

provided that there is symmetric connectivity 

between nodes. We are currently working on the 

proof of correctness in the case of unidirectional links. 

We are also investigating on how our election 

algorithm can be adapted to perform clustering in 

wireless, ad hoc networks. Acknowledgment : This 

research was supported by the Ministry of Education, 

Science Technology and Korea Industrial Technology 

Foundation through the Human Resource Training 

Project for Regional Innovation

참 고 문 헌

[1] G. LeLann, "Distributed systems–towards a 

formal approach," in Information Processing 

77, B. Gilchrist, Ed. North–Holland, 1977.

[2] H. Garcia-Molian, "Elections in a distributed 

computing system," IEEE Transactions on 

Computers, Vol.C-31, No.1, pp.49-59, Han 1982.

[3] H. Abu-Amara and J. Lokre, "Election in 

asynchronous complete networks with 

intermittent link failures," IEEE Transactions 

on Computers, Vol. 43, No.7, pp.778-788, 1994.

[4] H. M. Sayeed, M. Abu-Amara, and H. 

Abu-Avara, "Optimal asynchronous 

agreement and leader election algorithm for 

complete networks with byzantine faulty 

links," Distributed Computing, Vol.9, No.3, 

pp.147-156, 1995.

[5] J. Brunekreef, J. P. Katoen, R. Koymans, and S. 

Mauw, "Design and analysis of dynamic leader 

election protocols in broadcast networks," 

Distributed Computing, Vol.9, No.4, pp.157-171, 

1996.

[6] G. Singh, "Leader election in the presence of 

link failures," IEEE Transactions on Parallel 

and Distributed Systems, Vol.7, No.3, 

pp.231-236, 1996(3).

[7] P. David, guest editor, Special section on group 

communication. Communications of the ACM, 

Vol.39, No.4, pp.50-97, 1996(4).

[8] D. K. Pradhan, P. Krichna, and N. H. Vaidya, 

Recoverable mobile environments: Design and 

tradeoff analysis. FTCS-26, 1996(6).

[9] N. Malpani, J. Welch, and N. Vaidya, Leader 

Election Algorithms for Mobile Ad Hoc 

Networks. In Fourth International Workshop 

on Discrete Algorithms and Methods for 

Mobile Computing and Communications, 

Boston, MA, 2000(8).

[10] K. Hatzis, G. Pentaris, P. Spirakis, V. 

Tampakas, and R. Tan, Fundamental Control 

Algorithms in Mobile Networks. In Proc. of 11th 

ACM SPAA, pp.251-260, 1999(3).

[11] C. Lin and M. Gerla, Adaptive Clustering for 

Mobile Wireless Networks. In IEEE Journal on 

Selected Areas in Communications, Vol.15, 



한국콘텐츠학회논문지 '08 Vol. 8 No. 1262

No.7, pp.1265-1275, 1997.

[12] P. Basu, N. Khan, and T. Little, A Mobility 

based metric for clustering in mobile ad hoc 

networks. In International Workshop on 

Wireless Networks and Mobile Computing,  

2001(4).

저 자 소 개

박 성 훈(Sung-Hoon Park)                   종신회원

▪1982년 2월 : 고려대학교 정경대

학(경제학사)

▪1993년 12월 : 인디애나대학교 

컴퓨터학과(공학석사)

▪2000년 12월 : 고려대학교 컴퓨

터공학과(공학박사)

▪2004년 9월 ～ 현재 : 충북대학교 전자정보대학 컴퓨

터공학과 교수

 <관심분야> : 분산/모바일/유비쿼터스 컴퓨팅, 정형

기법이론,  계산이론



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


