I- *IAE'"()"A‘l

T™=

II' = X4 Il'x

o

oj2st ME AnAE

O =

An Election Algorithm with Failure Detectors in Distributed Systems

2 wRolal $7149 BN LA B2l 2nelFd, 7 & A% (election) 1L
UFE AR o)8 BAshaA Brk 57142 RAN AN Y12 B dnelFe w24 3
AT o138 Ug EeMo AN 74 2 5 9ee nalr
B SN0 I ME dTRF I DF R SAIN Mo | A AJAH |

In this paper, we design and analyze an election algorithm, based on the Bully algorithm, in
synchronous distributed systems. We show that the Bully algorithm, when using Failure Detector,

Is more effectively implemented than the classic Bully algorithm for synchronous distributed
systems.

B keyword : | Election Algorithm | Failure Detector | Concurrency Control | Distributed Systems |

1. Introduction

Leader election, simply election, is an important
problem to construct fault-tolerant distributed
systems. Depending on a network topology, many
kinds of leader election algorithms to elect a
high-pricrity leader have been presented so far.
Some algorithms are based on complete topology and
others based on ring topology [1-3] or tree topology
[4-7]. Among those, as a classic paper, there is the
Bully algorithm for synchronous systems based on
complete topology specified by Garcia—Molina [8].

The leader election algorithm is used usefully in

those systems where a coordinator of the protocol is
needed, such as replicated data management, atomic
commitment, process monitoring and recovery. In this
paper, we show the Bully algorithm, when using
failure detector (FD)[9],
implemented than the classic Bully algorithm in

is more effectively
synchronous distributed systems with crash failures.
Garcia-Molina's Bully algorithm detects a crashed
node by time-out intervals, but the modified Bully
algorithm presented in this paper uses
failure-detector instead of the explicit time-out.

A failure detector is an independent module that

detects and reports crashes of other nodes. There are

a

2 TE2 20063HE ER0sD e RA|HAL el odd] X|[Hof 2|5to] oS
HTHE 1 #071018-002 AMAtptz 2l : 2008'-4 28 11y
MR- 20074 10 18Y DMK} : gFME e-mail : spark@cbnu.ackr

10 St2EHX3I3|=2X| '08 Vol. 8 No. 2

some of advantages in rewriting Bully algorithm in
this way. First, the modularity facilitates use of
different failure detection mechanism in different
systems. Therefore, implementation of election
algorithm is efficient under synchronous distributed
systems composed of heterogeneous nodes. Second,
by checking crashes of other nodes concurrently
rather than sequentially, execution time of the
modified Bully algorithm using faihire detector is
faster than the classic Bully algorithm. Especially, in
the distributed system where many nodes are
connected and crash failures occur at many nodes
repeatedly, the execution time of the modified Bully
algorithm with failure detector is much more efficient
than the classic Bully algorithm. The rest of this
paper is organized as follows: in Section 2, we define
a model and definition in a conventional synchronous
system. Section 3 describes a solution for the leader
elecion with failure detector and analyzes the
protocol in terms of the number of messages and
times. We conclude in Section 4.

2. Model and Failure Detector

2.1 Model

Our ‘model of asynchronous computation with
failure detection is the one described in [9][10]. In the
following, we only recall some informal definitions
and results that are needed in this paper. We use
integers to identify the nodes connected on the
system and specify the set of nodes as formula (3.1).

D={12...n} (31

where n means total number of nodes connected on
the system and integers identifying nodes means
parameter which decides priority of them For

simplicity, we use node identifiers as priorities: lower

numbers correspond to higher priorities, as in UNIX.
That is, the priority of node 1 has the highest and the
priority of node 2 is second high and so on. Bully
algorithm is designed for the system with a few of
following properties. As a system environments the
synchronous system is assumed, where transmission
and processing time of the messages occurring
between nodes is predicted and information
exchanges between nodes is done within the given
time. A system is based on the fully connected
communication networks in which fixed number of
nodes is inter-connected through them Nodes crash
and recover. We do not assume any other kinds of
failures such as Byzantine failures. Each node has
access to a small amount of stable storage for
relevant information that is used for recovering right
after the failures. Communications between nodes are
done as sending messages. Communication is
FIFO. We
communications under the synchronous system is
reliable.

executed as assume also that

2.2 Failure Detector

The failure detector (FD) is an independent module
with a function that detects crash and recovery of a
node in a system. Whenever the client needs this
information, the FD reports this to a client. The FD
has an input Request FD(;) which asks the
monitoring the node i (i€ID). We illustrate the
meaning and usefulness of this with an example.
Suppose node i crashes and a client asks the FD on
node j (jEID) of monitoring node i by sending a
signal Request_FD(i). In this case, the FD on node j
accepts Request_FD(i) as an input from the client and
it refers to the down_list which is a list of crashed
nodes to check whether node 7 is down or not.

If the node 7 is in the down list, FD informs the
client that the node i is down by raising the signal

AM2AH0IM D%

—_

M

ki Mg gzl

0|83t

o

11

o

<DownSig, i>. If it is not in the down_list, FD
monitors the node i for a few seconds. After that, if

FD detects that the node is dead, it adds it to the

down_list and informs the client that the node i is
down by sending the signal <DownSig, i>. If it
knows that the node is alive, the FD informs the
client that the node i is alive by sending the signal
<UpSig, ©>. Note that the FD never sends a signal
more than once whenever the FD receives the signal
Request_FD(i). More precisely, after an invocation of
Request_FD(i), if node i is down, then the FD is
required to raised <DownSig, i> only once regardless
of whether the node i recovers again after raising
<DownSig, > hefore the most recent invocation of
Request_FD(i). Furthermore, to ensure that the FD
reports up-to-date information, we require that the
client receives <DownSig, i> only if node i is down
after the most recent invocation of Request_FD().
By managing the information about crashed nodes
as a form of the down node list, the FD can send the
information about crashed nodes to the client more
promptly than the Garcia-Molina’s one can. When the
crashed node recovers again, it sends to the FD on
each node immediately the message informing that it
has recovered. After receiving the message, if the
name of the recovered node exists in the down_list,
the FD removes the node’s name from the down_list.
There are many other methods to implement failure
detector. For example, the simplest implementation of
failure detector is to send the "Are You Alive?”
message to each node being monitored periodically. If
a reply is not received in the expected time, FD raises
<DownSig, > for the node. A more slightly
complicated approach is for each node i, when it
starts monitoring node j, to tell node j to periodically
send "Tm alive” message to node i, This uses fewer
messages and reduces the latency of the FD, A more
complicate approach, based on an attendance list

[11[2], is to a construct logical ring and periodically
circulates a token around it. If a node does not see the
token within the expected time, then one or more
nodes are failed, and "Are you alive?,” messages can
be used to pinpoint the failed nodes. With this
approach, fewer messages will be used if multiple
nodes are being monitored by multiple nodes, though
at the expense of increased detection latency.

3. Bully Algorithm Using FD

3.1 Garcia-Molina’ S Bully Algorithm

The Bully algorithm, which is Garcia-Molina's
leader election algorithm for synchronous distributed
system, shows that all the nodes in a group can reach
a stable state in which every not crashed node agrees
to only one leader.

The Bully Algorithm works as follows. When a
process notices that the coordinator is no longer
responding to requests, it initiates an election. A
process, P, holds an election as follows:

1. P sends an ELECTION message to all processes

with higher numbers.

2. If no one responds, P wins the election and

becomes coordinator.

3. If one of the higher-ups answers, it takes over.

P’s job is done.

At any moment, a process can get an ELECTION
message from one of its lower-number colleagues.
When such a message arrives, the receiver sends an
OK message back to the sender to indicate that he is
alive and will take over. The receiver then holds an
election, unless it is already holding one. Eventually,
all processes give up but one, and that one is the new
coordinator. It announces its victory by sending all
processes a message telling them that it is the new

coordinator.

12 SIZEHIXSIE|=2X| '08 Vol. 8 No. 2

If a process that was previously down comes back
up, it holds an election. If it happens to be the
highest-numbered process currently running, it will
win the election and take over the coordinator’s job.
Thus the biggest guy in town always wins, hence the
name "bully algorithm”.

‘This algorithm does exactly the function of electing
a leader in the distributed systems where small
number of nodes are connected as a group and the
frequenicy of each node’s crash failures is relatively
low. But in the system where large number of nodes
are connected as a group and each node’s crash
failures are frequent, the execution speed for the
algorithm will be slow. At the worst case, the system
may not reach for a long time to the stable state in
which every not crashed node agrees only one leader.

Repetitions of crash failures of nodes with high
priority continue to have the system be in the state of
the leader election since a lot of time is spent to
detect whether a node is crashed. The modified Bully
algorithm using a failure detector, which we call
Bully_FD algorithm, is faster than the
Garcia-Molina's one in terms of execution speed.
Because it greatly reduces the time taken for the
detection of crashed nodes.

3.2 Description and algorithm of Bully_FD

Basic idea of Bully algorithm is that the operational
node with the highest priority is elected as a leader
among all of nodes. Each node i has a status variable,
initially having Norm value. Following is the scenario
of the leader election using FD.

When node 7 detects that its leader is crashed or
when the crashed node is recovered, the node sets its
status variable to Elec; and indicates that it is in the
stage 1 of organizing a leader election. In stage 1,
node i checks whether the nodes of less(i), whose
priority is higher than itself, is operational or not.

If some of them are operational, node i stays on the
Wait state in order to give those higher-priority
nodes a chance to become the leader. If it is recovered
from the Dead state, it waits for the message
<Norm?, t> asking the state of recovered node from
the leader. If none of nodes with higher-priority are
operational (e, if node [receives the message
<downSig, ;> for all j € less(j) from FD), then it
stays in stage 2 of organizing a leader election and
sets its status variable to Elecs,

On stage 2, node [prepares the lower—priority
nodes in greater(i) for a new leader by sending them
Halt message. When a node receives a Halt message,
it sends an Ack message and switches its status
varable from Norm to Wait state indicating that it is
waiting for the outcome of the election. If a node on
Wait state detects the failure of the node which halted
it by receiving <DownSig, > from FD, it switches its
status from Wait to Elec; and restarts the election.
When the node on stage 2 which organized the
election has received an acknowledgement signal
from each node in greater(i), then it becomes a leader
to set its status to Norm and notifies the fact that it
is elected as a new leader to all nodes in greater(i) by
sending /dr message. All nodes recetved Idr message
from node { accepts node i as their a new leader,
switching their status from Wait to Norm.

Periodically, the leader sends the message
<Norm?,t> checking status of node to all nodes with
lower-priorities in order to find out whether
recovered nodes exist. The node which has received
the message <Norm?t> sends the message
<NotNorm,t> if it is not on Norm state.

The leader which has
<NotNorm,t> switches its state to Elec;, and then it

does the leader election process again.

received message

The messages described above have an election

identifier. We can identify which election the message

EA NARIIN T 3 BXS 093 N YTAZ 13

is part of An identification tag is a tuple which
contains the identifier of the node which starts the
election, the node’s incarnation number which is kept
on stable storage and incremented on each recovery
after failure, and a sequence number of election which
is incremented for each election. I the ack or ldr
which doesn't contain the expected identifier arrives,
the message is ignored. [Figure 311 depicts
re~written Bully Algorithm using FD. It is designed
in forms of reactive style, using Upon statement to
specify the codes to execute when message or signal
is recejved.

It is specified as a the codes executed at T intervals
using Periodically() statement. Each node is initiated
by executing Upon Recovery statement. The modifier
stable in Variable declaration statement means a
variable is stored on the stable storage. The
statement Send m to j means message m is sent to
J. Send m to S, where S is set of nodes, means
message m is sent to each node which belongs to the
set S repeatedly. In the same way, Request FD(S)
denotes repeated execution of Request_FD.
—
Var status : {Norm, Elecl Elec?, Wait }
Var Idr @ D
Var efid : ID x Natural Number
Var down : set (ess(i))

Var dw_gter,acks : set{greater(;))
Var nextel : Natural Numher
Var stable incarn @ Natural Number

Periodically(t) do

if status = Norm A ldr # i then
Request _FD(ldr) fi od

procedure Stagel()

status < Elecl; down <« @

elid < <iincar, nextel>

if =1 then Stage2()

else Request_FD(less(i)) fi

Upon receive <Halt,t> from j do
down < down - { i} elid < t; status < Wait
Send <Ack, t> toj od

Periodically(t) do
if status = Wait then Request_FD(j) od

Upon receive <downSig,j> from FD do
if j &€ less(i) then down < down U {j }
if (status = Norm A j = ldr)
V (status = Wait A j = head(elid)) then
Stagel()
else if status = Elecl A down 2 less(i) then
Stage20) fi fi
else (¥ &€ greater(i) *)
dw_gter < dw_gter U {j } fi od

Upon receive <UpSig, ;> from FD do
if j & greater(i) Astatus = Elec? then
send <Halt, elid> to j fi od

procedure Stage?()
status < Elec2, acks ,dw_gter «— &
Request_FD{(greater(;))

Upon receive <Ack,t> from j do
acks < acks U {j}
if stotus = Elec2 N {(acksUdw_gter) D greater(s))
then ldr < i status < Norm
send <Ldrt> to acks fi od

Upon receive <Idr,t> from j do
if status = Wait A t = efid then
ldr < j; status < Norm fi od

Periodically (1) do
if status = Norn A Idr = [then
Send <Norm?, elid> to greater(i) fi od

14 Bt EHIX5}5|i=27| '08 Vol. 8 No. 2

Upon recrive <Norm?t> from j do
if status # Norm then
Send <NotNorm,t> to j fi od

Upon receive <NotNorm, t> from j do
if status = Norm A Idr =i A t = elid then

Stagel() fi od

Upon recovery do

incarn < incarn + 1; Stagel() od

Figure 3.1 Bully_FD Algorithm

The expressions S Ux and S-x denote the element
x is added to and removed from set S respectively.
The expressions S«+Sx) and S«{S-x) mean that
element x is added to and removed from set S, thus
set S is updated. The operator head returns the first
element of a tuple.

The significant differences between existing Bully
algorithm and Bully_FD algorithm is as follows.

1. Bully_FD algorithm uses a failure detector rather
than explicit time-outs to track failed nodes. In
the original Bully algorithm, node i waits a reply
from node j to confirm a node’s failure. But in
Bully_FD algorithm, node j is being monitored by
node s FD and node i receives either
<DownSig,i> or <UpSig, > from the failure
detector. Note that procedure time—out in the
Bully algorithm is, in effect, integrated into the
codes of handling <DownSig,i> in the Bully_FD
algorithm.

2. In stage 1 of an election, each node checks
concurrently rather than sequentially whether
the nodes with lower priorities is operational.
This optimization is independent of the use of a
failure detector, but we can take advantage of

such techniques using FD but would be
awkward to express using Garcia-Molina's
RPC-style communication primitive.

3. Each message has an election identifier that
identifies the elections, so we can avoid
confusions incurred from the deferred messages
on the network.

3.2 Efficiency Analysis of the Processing
Time
Let's compare the processing time of Bully FD
algorithm proposed on this chapter with the
Garcia-Molina's Bully algorithm. We define the
elements that affect the processing time as follows.

N: Total number of nodes on the system

Nit The number of failed nodes

Tw: Average propagation time per message of a
node

T, Average message handling time of a node

T, Time-out (T,> T,

Te : Average response time from a node

The message delivery subsystem delivers all
messages within Ty, seconds of the sending of
message. A node responses to all messages within T,
seconds of their delivery. Thus, formula (32)
describes the average response time from a node.

Te=2Ta+ T, (32

When the leader fails, a node with highest priority,
whose Identification is k, recognizes it and starts the
leader election and finishes it. Following formula
describes the total processing time in Bully algorithm
of Garcia—Molina.

Ten = k-1*T, + [(IN; -k+D*T, + (N - Np*T)
=Ny * T, + (N-Np * T (33

Mg D3

i

x|

i

083 ME |

ol

15

™

The term ((k-1)* T,) in formula (3.3) describes the
time taken when node k detects that all nodes with
higher—priority are crash failed. It is the time required
on transiting from the state Elec; to Elec;. The term
[N} - k+D*To+(N - Np*T.] describes the time taken
on the node k's checking whether the nodes with
lower—priority are crashed or not. It is the time taken
on transiting from the state Elec; to Norm.

In the same way, total time taken from start leader
election to finish it on executing the Bully_FD
algorithm is formulated in formula (3.4).

Touiey pp = 25N*T + (p*Ne¥T, + (1-p)*NexT,) +
(N - Np*T. (34

In formula (3.4), T denotes the time required for a
node to send one message to a FD. Consequently, the
term 2+#N+T is the total time taken to transmit
messages between node k and the FD as one of signal
forms. Let's assume that p is the ratio of all failed
nodes to the failed nodes which FD has already
known as it is written in its down node list. For
instance, if 10 nodes have been failed, and FD has
written 7 nodes in down node list, then the value of
p is 0.7. The term (p*Ne#T, + (1-p)*NexT,) means the
time taken for FD to detect the failure of each node,
and the term (N - Np)*T, signifies the time for FD to
confirm the liveliness of the normal nodes.

Ti=(33) - (34) = pNa(T, - T,) - 24NwT. -
D*Nf*(To - Tp) (3.5)

By using the formula (3.3) and (3.4), the formula
(35) is induced as below which describes the
difference of processing time between Garcia—Molina
Bully algorithm and Bully_FD algorithm. In the
* formula (35), the value of 2+N+Ty is small enough to
be negligible. As I mentioned before, it is the time
required for the message exchanges to detect the
failed nodes between the node leading the leader

election and the FD. The message exchanges
between them are executed almost concurrently
rather than sequentially. Definitely (T -T,) > 0 is
true and p*Ngx(Ty - T) > 0 is also true. Thus, we can
make sure that Bully FD algorithm is faster than
Garcia-Molina Bully algorithm in processing time.

4. Concluding Remarks

So far, many algorithms related with leader election
on distributed system are proposed [11-14]. Many of
them have concentrated on the solution to the
problem of self-stabilizing construction of system
using timeout interval. The leader election algorithms
hased upon timeout interval are clear and simple in
terms with semantics in the system where the small
number of nodes are connected and the frequency of
each node’s crash and failure is relatively low. But in
the distributed system where many heterogeneous
nodes are connected and the frequency of each node’s
relatively high, there are some of problems such as
prolongation of executing time. The Bully_FD
algorithm is same as the classic Bully algorithm in
terms with using timeout interval to detect the
crashed nodes. The difference between two
algorithms is that the Bully_FD algorithm uses the
FD but the classic Bully algorithm uses timeout
interval directly to detect the crashed nodes. By doing
this, Bully_FD algorithm can detects the crashed
nodes concurrently rather than sequentially and thus
the speed of processing time in the Bully_FD is more
enhanced than the classic one. As another advantage,
FD is a module so that modularity facilitates use of
different failure detection mechanism in different

systems.

16 BH=nE=8}3

T

£X] '08 Vol. 8 No. 2

{1I E J. Chang and R.. Roberts, "An improved
algorithm for the decentralized extrima-finding
in circular configurations of processes,”
Communication of ACM, Vol22, Nob,
pp.281-283, 1979.

[2] G. L. Peterson, "An Ofnlogn) unidirectional
algorithm for circular extrima problem,” ACM
Trans. Programming language and systems,
Vol4, pp.758 - 762, 1982.

[3] D. S. Hirshberg and J. B. Sinclair, "Decentralized
extrima finding in circular configurations of
Processors,” Communications of the ACM,
Vol.23, No.11, pp.627-628, 1980.

(4] R. Gallager, P. Humblet, and P. Spira. "A
distributed algorithm for minimum weighted
spanning trees,” ACM trans. On Programming
longuage and Systems, Vol.5, No.l, pp.66-77,
1983.

[5] G. Gafini, "Improvement in time complexity of
two message optimal algorithm,” Proc
Principles of Distributed Computing Corf,
pp.175-185, 1985,

[6] F. Chin and H. F. Ting, "An almost linear time
and O(nlogn+e) message distributed algorithm
for minimum weighted spanning trees,” Proc
Foundations o Computer Science Corf,
pp.257-166, 1985.

[7] R. Chow, K. Luo, and R. N. Wolfe, “An optimal
distributed algorithm for failure driven leader
election in bounded-degree networks,” Proc
IEEE Workshop on Future Trends o
Distributed Computing Systems, pp.136-141,
1992.

[8] H G Molian, "Elections in a distributed
computing system,” IEEE Transactions on
Computers, Vol.C-31, No.l, pp.49-59, 1982.

[8) D. C. Tushar and T. Sam, “Unreliable failure
detectors for reliable distributed systems,”
Journal of ACM, Vol43, No2, pp.225-267,
1996.

{10] V. Hadzilacos and S. Toueg, “B. Reliable and
Related Problems,” In Distributed Systems
(Second Edition), ACM Press, New York,
pp97-145, 1993.

[11] D. Shlomi, I. Amos, and M. Shlomo, "Uniform
dynamic self-stablizing leader election,” In Sam
Toueg, Paul G. Spirakis, and K. Lefteris, Proc
5% Internationdl Workshop on distributed
Algorithms(WDAG 91), of Lecture Notes in
Computer Science, Vol.579, pp.167-180, 1991.

[121 I Gene, L. Chengdian, and S. Janos,
"Deterministic, constant space, self-stabilizing
leader election on uniform rings,” In
Jean—Michel Helary and Michel Raynal, editors,
Proc 9" Internationdl Workshop on
Distributed Algorithms(WDAG %), Vol972,
Pp.283-302, 1995.

[13] G. Rachid, "On the hardness of failure-
sensitive agreement problems,” Information
Processing Letter, Vol79, No.2, pp.99-104,
2001.

[14] A. Mostefaoui, E. Mourgaya, and M. Raynal,
"Asynchronous Implementation of Failure
Detectors,” Proc Int. IEEE Conference on
Dependable Systems and Networks(DSN'03),
IEEE Computer Press, San Francisco(CA),
pp.351-360, 2003.

g

MEI9)

£ 1982 29 : meicheta A7)
3 SASIHAA D)

£ 19934 24 © Qlcjofibo) st of

39l AT (T

0

4+ A 3(Sung-Hoon Park)

~ A FRY S N7) AR R

/A F A 2 A2 R o

