274 HIo{| =
o™= oVl=

2|S2|0]

o3t =2

M MM HES3 ot ZRES

Resilient Security Protocol for Combating Replay Attacks in Wireless Sensor

Networks
A, F L, /L, ENME
Amietn Aashy g BT EAT A
AFo)etn mokshR

Di Zhang(zhangdi_cn®@jbnu.ac.kr)’, Ung Heo(heoprinc@jbnu.ac.kr)”,
Kangsoo You(gsyou@jj.ac.kr)”, Jaeho Choi(wave@jbnu.ac.kr)’

2%

ko] AgtE O] Sl AA EEo Bt ZREZ V)5S o3 diofl= 3 ofE o] FRkdT) ohdet
A% /1WE FolA NEKAPS A4 549 $gahe vl 579l Zaezolr). v, of 7ie
2 @40 7hsele] @Edo] F2o) ok Ho| Al ¥ =oli= NEKAPS| g mekale] 74
A HES A7) glEdo] 348 EHHoR ol = s FH 1T 7|9 Bk Z2EZS Aoket
o} AQkgt 7ol A= ] 7] Bt 71E 7 ol Fosle] XA} AlFH QTR Heket BokS Al
ok Ak ZIe) A5 Wek QF, 37wl X, gLee] 34 ol T FuelM B4 7Y
AHESte] Hrlstdom 7]Ee] 71 Hlulsts o ASket 7ol ¥ & AdE YERSITL
B SN0 I RM MM HEYT | HORIF | 2|E20] 32 | HoF Z2EZ |
Abstract

Due to the resource limitations of sensor nodes, providing a security protocol is a particular

challenge in sensor networks. One popular method is the neighborhood-based key agreement
protocol (NEKAP). NEKAP is an efficient and lightweight protocol, but it includes loopholes

through which adversaries may launch replay

attacks by successfully masquerading as legitimate

nodes. In this paper, we present a modified security protocol for wireless sensor networks. We

provide four types of keys for each node, which adapt to different security requirements; and an

improvement is made to alleviate the replay attack. According to our qualitative performance

analyses, the proposed security protocol provides effectiveness in terms of authentication

security,
conventional method.

attacking node detection, and replay attack resilience when compared to the

B keyword : | Wireless Sensor Networks | Authentication | Replay Attack | Security Protocol |

I. INTRODUCTION

Wireless sensor networks (WSNs) are distributed

systems consisting of a large number of sensor nodes
with a base station as a controller that serves as the

interface between the sensor network and the outside

S #100504-003
YAt - 20104 052 04

AMAtt2 e 20104 068 16
WAXRL : 2T S, e-mail : wave@jonu.ac.kr



21220] 3

2 WoiZ Sat 2 MM YEYS Hot mRES

=

71

network. WSNs may be deployed in unattended and
battlefields.

Compared to conventional networks, they are more

adversarial ~environments such as
vulnerable to physical destruction and man-made
threats. Therefore, providing security is a particular
challenge in sensor networks due to the resource
limitations of sensor nodes, wireless communications,
and other related concerns. As a specific example, it
is impractical to use asymmetric crypto-systems in
sensor networks in which each node has low
operational capability and insufficient memory (e.g.
Crosshow’'s MICA2/MPR400CB  sensor node [1]).
Thus, the key management protocols for sensor
networks are based upon symmetric key algorithms,
and the design of the security protocols for WSNs
should be as lightweight as possible.

NEKAP [2] is a link layer key agreement protocol
for sensor networks that establishes two kinds of
link

communications, and cluster keys, for link layer

keys: parwise keys, for layer pairwise
broadcast communication. In NEKAP, the node keys
are generated from the master keys of the neighbor
nodes, making the discovery of these keys more
difficult for enemies. To establish all of the keys, each
node broadcasts only three messages, so the protocol
is very energy-efficient. The main contribution of
NEKAP is the implementation of a key agreement in
which each key is valid only in its neighborhood, and
therefore the impact of a compromised node key can
be restricted to that node’s neighborhood. Thus, it is
impossible for an adversary to carry out a wide-scale
attack by capturing only a few nodes. Moreover, the
energy cost of this solution is lower than that of
previous solutions.

NEKAP has many advantages for WSNs because it
is intruder resilient and energy efficient.
Unfortunately, NEKAP is vulnerable to replay attacks

[3] because of the key establishment process, which

includes only three broadcast messages. A malicious
node may transmit an old message that was originally
broadcasted from a legal node to its neighbor nodes,
and the message cannot be authenticated because
these two nodes cannot communicate directly (see
Section II). Therefore, a malicious node may gain
legal status by cheating the chosen legal nodes by
transmitting the old message, and then an adversary
may launch other attacks, such as DOS [4] attacks,
black-hole attacks,
addition, NEKAP suffers from node tampering during

or masquerade attacks. In

network initialization. The problem stems from an
irrational assumption made on the relationship
between the secure key establishment time and the
node tampering time. It will be discussed in detail in
Section II.

Therefore, this work is motivated by solving the
drawbacks in both LEAP and NEKAP protocols
without carrying more resource consumption. In this
paper, we present a modified NEKAP that can
prevent replay attacks, and we present a new
modified security protocol for wireless sensor
networks. The focus of the paper is to dismantle the
unreasonable time assumption made in NEKAP and
making the authentication and security protocol of us
be much general and resilient.

The rest of the paper is organized as follows. In
Section II, we review related studies that have
previously presented security protocols for sensor
networks, provide an overview of NEKAP, and we
describe loopholes in NEKAP that may be exploited
by adversaries to launch replay attacks. In Section III,
we discuss our system and assumptions, and present
the details of our modified security protocol. We
present a security and performance analysis in

Section IV, and provide our conclusions in Section V.



72 SHREHIXSHS|=2X] '10 Vol. 10 No. 7

Il. RELATED WORKS

Link layer key agreements between neighboring
nodes are fundamental for securing sensor networks
deployed in unattended and hostile environments [5].
There are several relevant approaches presented in
the literature [6-8]. Link layer key agreements allow
two nodes to communicate directly via a shared
pairwise key.

The localized encryption and authentication protocol
(LEAP) [9] was first proposed by Zhu, et al., as a key
management protocol for sensor networks designed to
support in—network processing. LEAP solves the
problem of key distribution and restricts the impact of
a compromised node on the network. LEAP
establishes four types of keys, for each node and
communication type: 1) the individual node key,
which is shared between each node and the base
station and is used to communicate with the base
station, is pre-loaded before its deployment; 2) the
pairwise key, which is shared between a node and
each one of its neighbors, is used in parwise
communication among them; 3) the cluster key, which
is shared between a node and all of its neighbors, is
used in local broadcast communication; and 4) the
group key, which is shared by all nodes, is used in
broadcast multi-hop from the base station. In sensor
networks, the use of a pre-deployed key is the most
practical approach for bootstrapping secret keys in
sensor nodes. In LEAP, the nodes were loaded before
they were deployed in the sensor field. Pairwise keys
could be generated between two nodes based on this
pre-deployed key information. The problem with
LEAP is the excessive number of messages that must
be exchanged during the establishment of the keys;
the communication cost is very high.

Oliveira, et al., presented SPINS [10], a security
protocol for WSNs, and proposed two building

security blocks optimized for sensor networks: SNEP
and pTESLA. SNEP provides end-to-end data
confidentiality, two part data authentication, and data
freshness between the base station and each node; u
TESLA is a protocol that provides multihop
broadcasting from the base station.

Since NEKAP is a peer—-to—peer approach, it can be
used in combination with the SNEP or pTESLA

protocols to increase security for sensor networks.

1. Overview of NEKAP

NEKAP is a link layer key management protocol
that establishes two kinds of keys: pairwise keys, for
link layer pairwise communication; and cluster keys,
for link layer broadcast communication. It is similar to
LEAP, however, NEKAP is more resilient to node
tampering and is even more energy—efficient.

In NEKAP, each node is pre-loaded with a master
key, and broadcasts to its neighbors using this key
encrypted with a global shared key. The node keys
are generated from the master keys of neighbor
nodes, making the discovery of these keys more
difficult for an adversary. To establish all of the keys,
each node broadcasts only three messages, so the
protocol is very energy-—efficient.

Since the key is valid only within its neighborhood,
and since the impact of a compromised node key can
be restricted to the node’s neighborhood, NEKAP is
also intruder resilient.

2. Loopholes of NEKAP
In NEKAP, the process of key establishment consists

of only three broadcast messages, which are broadcast
from each node to its neighbor nodes. NEKAP can
provide data confidentiality, but it cannot provide
broadcast authentication during the key establishment
phase. Thus, the nodes are vulnerable to replay attacks.

In replay attacks, malicious nodes are deployed in a



21220] 3

2 WoiZ Sat 2 MM YEYS Hot mRES

=

73

sensor network during the initialization phase. If the
malicious node retransmits legitimate old messages
previously broadcast from a legal node to another that
cannot communicate directly, the malicious node can
pass itself off as a legal node in the network, as
shown in [Figure 1].

In [Figure 1], the malicious node retransmits node
A’s broadcast messages to node B, so that node B will
then regard the malicious node as node A. Similarly,
the malicious node can also act as a neighbor node B
to node A if it retransmits node B's broadcast
messages to node A. Actually, however, nodes A and
B cannot communicate with each other directly, and
the malicious node acts as an intermediate node
between nodes A and B in the network. The malicious
node cannot threaten the security of its region when
it is between two nodes that can communicate
directly, however. [Figure 1] shows an example of an
attack by one node, and [Figure 2] shows an example
of an attack by two nodes.

Combining these two conditions, random diffusion
with several malicious nodes will confuse the
framework of the network (as shown in [Figure 3]).
The adversary can then execute a DOS attack or a
black-hole attack after the routing is established.

Another problem comes from the time assumption
made in NEKAP (also in LEAP). It assumes that
there exists a lower bound on the time interval Tmin,
which is a necessary time for an adversary to
compromise a sensor node, and that the time Test for
a newly deployed sensor node to discover its
immediate neighbors is smaller than Ty Even
though it can be practically a reasonable assumption
that  Tiin> Test,

compromise a sensor node within the time interval

however, if an adversary can
Tes, 1t can discover all of the information in the node,
and can then decrypt all of the broadcasting
information using the taken global key.

In the next section, we present a better protocol
that can alleviate the time assumption and improve
resilience against replay attack while keep the
resource consumption at the comparable level as in

conventional method.

y
7,

\ Malicioys'Node B

\ DA

| _ -

Fig. 2. Replay attack by two nodes

[ J SensorNode o

Compromised SensoNode

@ MaliciousNode

Fig. 3. Replay attack by more than two nodes



74 SHREHIXSHS|=2X] '10 Vol. 10 No. 7

Ill. PROPOSED METHOD

1. System and Assumptions

We assume that a typical sensor network forms
around one or more base stations acting as the
controller (or key server) with sufficient power,
memory, and computational capabilities to serve as
the interface between the sensor network and the
outside network. The sensor nodes establish a routing
forest, with a base station at the root of every tree.
However, we assume that the base station will not be
compromised. In such a system, node deployment is
random, the neighborhood of any node is not known
in advance, the wireless communication is not secure,
and the system is subject to eavesdropping, package
insertion, and replay of older messages. The nodes
are vulnerable to tampering. We assume that if a
node has been compromised, the enemy has access to
all of the information handled by that node.

2. Notation

The following symbols are used in the text:
- ID : Node identifier, MAC address;

- f t Pseudo-random function;

- K : Global key shared in each node;

- K, . Master key, known only by the BS;

- K, : Individual key of node A;

- Kf; . Cluster key of node A,

- K 0 The nth key of node A’s one-way key chain
for local broadcast authentication;

- K" : Identification key of node 4;

- K, © Identification master key, known only by

the BS;
- K, : Pairwise key shared between nodes A and B;

- K. ! The insertion key used for new node

insertion in the insertion phase;

BS = * : Broadcast message sent by BS;

- {M}, : The encryption of message M with
encryption key K

= {M} 4 j1y * Denotes the encryption of message
M, with key K and the initialization
vector IV which is wused in
encryption modes;

MAC{M}, : Denotes the computation of the

message  authentication code
(MAC) of message M, with
MAC key K.

3. Protocol Description

As in LEAP and NEKAP, the design of our protocol
supports multiple keying mechanisms, following the
observation that different types of messages
exchanged between sensor nodes have different
security requirements, and that a single keying
mechanism is not suitable for meeting all of these
different security requirements. Specifically, we
support the establishment of four types of keys for
each sensor node! an individual key shared with the
base station, a pairwise key shared with another
sensor node, a cluster key shared with multiple
neighboring nodes, and a global key shared by all of
the nodes in the network.

Our protocol also includes an efficient protocol for
local broadcast authentication based on the use of
one-way key chains.

In order to prevent replay attacks, our protocol
provides a malicious node detection phase to detect
and remove any malicious nodes that may exist in the
network.

In addition, we provide a new bootstrapping method
in our protocol that solves the security threat of the
initialization phase (detailed in Section IV).

Our procedure is described as follows:



21220] 3

2
4

YOS flet FM MM HEHT B Z2EE 75

1) The Initialization Phase
Step 1: Each node is pre-loaded with a unique

number as its node identifier(/D).

Step 2: The controller creates a master Key (X))
and an identification master key(A&j,,) for all nodes

that is known only by the base station(BS).

Step 3: Compute and install an identification key
(K*") for each node A:
Ky =f (K A) M

Step 4: Each node A pre-loads its individual key
(K,), cluster key(K;l ), and global key(Ky):

Ky = f(K,,A)
Ky :f(KMA)

(&)

2) The Broadcast Phase
Step 1: When the broadcast phase starts each node

broadcasts a message to its neighbor nodes:

A=* {KAl,A,K;} ®3)

(Ke 1)

Step 2: There is a short waiting phase for all nodes

to complete broadcasting of messages.

Step 3¢ The base station (BS) broadcasts and
reveals the identification master key( &7, to all nodes.

BS = *: K, 4)

The neighbor nodes can compute the identification
key (K f) of node A, and they can then decrypt the
packet to get the cluster key of node A, the first key

of node A’s one-way key chain for local broadcast
authentication and verify the identification of the
packet. At last, the identification key (Kf) and

identification master key (A7, are erased.

Step 4: When the node has finished the above
process, it will broadcast its neighbor nodes list to its
neighbor nodes:

A=*{IDIEN,} . .K,, 5)
MACH{IDIEN,} . Ky i

Node A’s neighbor nodes B can receive the list
from node A, and the pairwise key(A;) between

nodes A and B will be:
Ky =f(K, K, ,IDJi€ N, N) ®)
The pairwise key between nodes A and B is
computed using their cluster keys and the identifiers
of their common neighbors. This makes it more
difficult for adversaries to compromise the network.

For example, in [Figure 1], the common neighbor of
nodes A and B is node C.

3) Malicious Node Detection and Diagnosis
Phase

In a replay attack, a malicious node stores a
received message and attempts to send it at a later
time. When the nodes receive the message, they
believe that it is an original message, even though it
is not. That causes the nodes to calculate incorrect
distance and signal strength since the node sending
the original message is not where they think it is.

Most proposals for preventing a replay attack
rely on a timestamp or sequence number. The

timestamp method must be supported by a



76 S=EIHXSE=2X] '10 Vol. 10 No. 7

synchronization mechanism, which is a complex
computation and therefore consumes a great deal
of energy. The method based on the sequence
number is not applicable to our sensor network
since the compromised nodes cannot
communicate directly.

In our protocol, we implement a malicious node
detecting and diagnosing mechanism based on the
acknowledgment message (ACK) to solve the above
problems.

Step 1: When node A receives a message from node
B, an ACK is generated and sent to node B. This
ACK message must be encrypted by the pairwise

key(K ;) to avoid fabrication by an adversary.
A= B A{ACK}, MACHACK}, ), (D

The message is then saved in a temporary buffer
until the ACK comes back.

Step 2: Node B resets timer when it receives the ACK,
and then it decrypts the MAC message to verify this ACK.
If the ACK is authentic, node B will add a timestamp TB
before this message is sent back to node A.

B= A:{ACK, T} . MACH{ACK, T3} )y

®

If the ACK is received in a certain amount of time,
then the node is an honest node, but if the message
is not received in that amount of time, then it is a
dishonest node, and the message may have been
transmitted by a malicious node. Thus, the node will
erase all related information, such as the pairwise key.

(The procedure is shown in [Figure 4]).

4) New Node Insertion Phase

The new node insertion phase is the same as that
of NEKAP, so we have omitted the details of this
phase.

Time|

Node 4 Node B

Receive the packet form Node B

o S

Sent the4CK; to Node B

A 4

Saving thedCK  in the buffer and
initialize the timer

Receiving thedCK and sent the
ACKBack to Node 4

|

Sent thedCKjback to Node 4

¥

Check if the
ACK

received ina

certain time,

Yes

No,

A A 4

|

|

|

|

|

|

|

|

|

|

|

isa NodeBisa |
honest node dishonest node :
|

|

|

|

|

|

A\

A 4

Delete all related information of
Node B

Time

Fig. 4. The procedure for malicious node
detection and diagnosis

V. SECURITY AND PERFORMANCE
ANALYSIS

In this section, we discuss some issues and

problems regarding our modified protocol.

1. Security Analysis:

1.1 Key discovery by the adversary

The keys provided in our protocol can be used to
authenticate all link layer messages. By discarding
non-authenticated messages, the nodes provide access
control to the network communication. Access control
successfully

prevents  external nodes  from



21220] 3

implementing several kinds of attacks such as the
msertion of false data, data modification, spoofing, and
attacks of denial of service in routing including black
hole, selective forwarding, and wormhole attacks.
Therefore, an enemy can use internal attacks only, and
to do this it needs to have information about the keys.
by
eavesdropping and cryptanalysis or by tampering

The adversary can discover the Kkeys
with a node, which are expensive processes. These
attacks can only reveal a limited number of keys
during network operation.

Due to several similarities, LEAP[9] and NEKAP[2]
were chosen for comparison with our modified
protocol (as shown in [Table 1]).

[Table 1] presents a comparison between the
number of keys that can be discovered using several
kinds of attacks in LEAP, NEKAP, and our modified
method. We can see that both LEAP and NEKAP are
vulnerable during the network initialization phase,
since  their

establishment are almost the same. For that reason,

bootstrapping methods for key

we have developed a new bootstrapping method.

1.2 About the new bootstrapping method

LEAP and NEKAP are based on an important
shared assumption. They assume that there exists a
lower bound on the time interval 77, that is a
necessary time for an adversary to compromise a
sensor node, and that the time 7, for a newly
deployed sensor node to discover its immediate

neighbors is smaller than 7’

min- In reality, it seems

> T .., butif

a reasonable assumption that 77, sty
an adversary can compromise a sensor node within
the time interval 7, they can discover all of the
information in the node, and can then decrypt all of

the broadcasting information using the global key.

4 WolE flgt FM MM HEQ3 B Z2EE 77
Table 1. Key Discovery Comparison
During  operation or initialization phases
Attack LEAP NEKAP Modified
Method
1. Node tampering Only Only Only
during network node node node
operation keys keys keys
2. Node tampering All Some No
during network keys of keys effect
initialization network
3. Global key discovery All None None
during network keys of
operation network
4. Global key discovery All All None
during network keys of | keys of
initialization network | network

In our protocol, we don’t need the time assumption as
in NEKAP, because we provide the new bootstrapping
method. In LEAP and NEKAP, the message is
encrypted by the global key, which should be
pre-loaded to all of the nodes at the initialization phase.
In chance, the adversary can compromise a node and
get the information e.g. master keys or global key, then
fabricate some message to intrude into the network.
But in our protocol, node

“{K A,A,K{;} (”),A” to its neighbor nodes. Notice

(1(5‘ K

each sends

that each node does not know the identification key
(K3") of any other node since that is constructed from
the identification master key (A7,). Even if the
adversary compromises a sensor node within the time
interval 7., it cannot decrypt any packets. The
adversary does not know any node’s information except
that of the compromised node before the identification
master key (A}, is revealed. In other words, this
packet cannot be fabricated and falsified, since nobody
can decrypt the message without the identification
master key (A7), and the identifier contained in the
packet can authenticate the same one outside.

The difference between NEKAP and our modified
protocol is that the nodes in the cluster group can



78 $=EIHXSE=2X] '10 Vol. 10 No. 7

complete keys exchanges safely because these two
master keys is only known by the base station, and these
keys are release only during a meaningful duration so
that the keys are used securely at the initiation time.
The construction of the pairwise key is also based
on the neighbor nodes. Therefore, our modified
protocol also has the positive characteristics of
NEKAP, including the fact that it is intruder resilient.

1.3 About the malicious node detecting and
diagnosing mechanism

In order to solve the threat of a replay attack, we
present a malicious node detecting and diagnosing
mechanism based on the acknowledgment message.

MAC layer timestamping is an effective method for
improving the precision of our malicious node
detecting and diagnosing mechanism. However, it
cannot be used without adaptation. Since an ACK
packet is encrypted after it is time stamped, the
sending time of the packet will be later than the
timestamp. The difference between the two times
consists of the encryption time (faneryprion), the MAC
calculation time (tazac-aicuiation), and the transmission
time of the timestamp signal (¢iimestamp), @S shown in
[Figure 5].

A :TyiTI

error

ttmwstamp + tr’nryption + t]l[A C— calculation

ltim(fstr),mp

= tmestanp 4 g

s ' packet Xa+ tlll/lC*

calculation

()

Here, « is the encryption time of a single byte.

In our mechanism, the timestamp is added at the
moment tx before the packet is encrypted, as shown
in [Figure 5]. We set the timestamp to the time ty
when the packet is actually sent in the MAC layer.

Node B

Add timestamp in the packet)
T ‘ hﬁ"‘*{ - ‘ o ‘
Lencrypion Enenypt the packet)

N - o)
‘CRC‘

- Add MAC in the packet)

‘CRC‘HMAC

Node A

Fig. 5. Error of timestamping in MAC layer
when the ACK message is sent back to
Node A

This method takes advantage of the fact that
sending ACK through a malicious node would take
longer than if it were transmitted directly. If the ACK
is received in a certain amount of time, then the node
is an honest node, but if the message is not received
in that amount of time then it is a dishonest node, and
the message may have been transmitted by the
malicious node. The amount of time (7jmeshoid) can be
more precise with the help of A

error*

¢ =ttt T A

threshold — ttransmissnn error

10)

Here, t73 is the duration of the transmission time

for the ACK message to be sent from node A to node

B; t3 is the duration of the transmission time from

node B to node A.

Therefore, proper detection and diagnosis of
malicious nodes will help our sensor network safely
build a routing table.

This is a lightweight and effective protocol. The
controller can detect and define most malicious nodes,

and can then dispose of the malicious nodes.



21220] 3

2 WoiZ Sat 2 MM YEYS Hot mRES

=

79

2. Performance Analysis:

We consider the following performance metrics in

our protocol.

2.1 Communication Overhead

Let n be the total number of nodes, let v be the
average number of neighbors, and N(n) be the number
of all messages transmitted for key establishment.

The cost of node deployment for LEAP in terms of
the number of transmitted messages is one message
from node (n), a response from each neighbor in the
neighbor discovery phase(n,v), and one message to
each neighbor for the cluster key announcement (r,v),
resulting in N(n,v):
11

N(n,v): IXn+lXvXn+1lXvXn

(1+2v)n

In NEKAP, the cost of node deployment is one
message from node (n), one message to send the
master key (n), and one message to complete the
neighbor announcement, resulting in N(n):

1Xn+1xXn+1xn (12

3n

In our protocol, the cost of node deployment is only
one message to send the master key (n), plus one
message to complete the neighbor announcement (n),
resulting in N(n):

1Xn+1xXn 13)

2n

Thus, in our protocol, there are only two broadcast
messages that need to be transmitted during the key
establishment phase, and the malicious node detecting
and diagnosing mechanism is a lightweight protocol,

so the communication overhead required is very low.

2.2 Computational Overhead

The main computational overhead for each node is
to verify a MAC and to establish a pairwise key
with every neighbor node. All of these processes are
easy to complete, so the computational overhead is

also low.

Table 2. Communication Overhead Comparison

Messages transmitted for Modified
key establishment = HE Method
N(n,v) (1+2v)n 3n 2n

V. CONCLUSIONS

We have presented a modified protocol for wireless
sensor networks, which not only has the advantages
of NEKAP, but also solves some of the security
problems of NEKAP. The properties of our protocol
are as follows:

e Qur protocol supports four types of keys per
node. These keys can be used to increase the security
of many non-secure protocols.

e We use a new bootstrapping scheme during the
key establishment phase to prevent an adversary
from compromising a sensor node.

e Qur protocol provides lightweight, effective
malicious node detection and diagnosis based on the
acknowledgment message.

e To generate the keys, our protocol requires only
two broadcasted messages from each node, and therefore

is energy-efficient and appropriate for use in WSNs.

g

L

Ho
ot

[1] Http://www.xbow.com/Support/Support_pdf_fi
les/getting_started_guide.pdf



80 set=2ZH=xst3|=2X| '10 Vol. 10 No. 7

[2] S. De Oliveira, H. C. Wong and J. M. Nogueira,
"NEKAP:  Intruder
Efficient Key Establishment in
Networks,” Proc. of ICCCN'07, pp.803-808,
Honolulu, Hawaii, USA, 2007.

M. Vella and A. Mahdy, "Survey of wireless

sensor network security,” Proc. of SACNAS

'08, pp.128-134, Salt Lake, Utah, USA, 2008.

[4] D. Raymond and S. Midkiff, "Denial-of-Service

Attacks and
Defenses,” IEEE Pervasive Computing, Vol.7,
No.1, pp.74-81, 2008.

[5] Y. Zhou and Y. Fang, "Scalable Link-Layer Key
Agreement in Sensor Networks,” Proc. of MILCOM
‘06, pp.1-6, Washington, D.C,, USA, 2006.

and V. D. Glicor, "A
key-management scheme for distributed sensor
network,” Proc. of 9th ACM conference (CCS
‘02), pp.41-47, Washington, D.C., USA, 2002.

[7] H Chan, A. Perrig, and D. Song, "Random key
predistribution schemes for sensor networks,”
2003 IEEE Symposium on Security and Privacy,
Berkeley, pp.197-215, CA, 2003.

[8] D. Liu, P. Ning and R. Li, "Establishing Pairwise
Keys in Distributed Sensor Networks,” ACM

Transactions

Resilient and Energy

Sensor

[3

=

in Wireless Sensor Networks:

[6

=3

L. Eschenauer

on Information and System
Security, Vol.8, No.1, pp.41-77, 2005(2).

[9] S. Zhu, S. Setia and S. Jajodia, "LEAP: efficient
security mechanisms for large-scale distributed
sensor networks,” 10th ACM Conference (CCS '03),
pp.62-72, Washington D.C,, USA, 2003(10).

[10] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen,
and D. E. Culler, "SPINS: security protocols for

in Wireless Networks,

Publishers,

sensor networks,”
pp.521-534, Kluwer
Netherlands, 2002.

Academic

XN A A Y
% A(Di Zhang) =3
= 2008 74 South-Central

University for Nationalities(&
SFA})
- 20104 79 : ATk AAt

sl aHAD

oi

<FAF-oF> ¢ cryptography, security protocols
3] 2(Ung Heo) 3|1

[}
- 2002\ 29 A Eietal 7

FEHEAAD

Y
o

= 2004 2€  AEUIE FFE
FINFEA AL
= 2004 2¥ ~ EA - A5
AFH TR R)
<TAROE> - BHld B4 Z2EF AT 2ddy
& 7+ 4(Kangsoo You) 3|1
=199 2€  AEUE W HFH
T I(F A AL
= 20061 8¢ AEUEL G4

& A & (Jaeho Choi)

sh}(g b))
L2006 99 ~ @A) AEUS

okrsdlH 2~
WFSH- wF

M3l

= 1985d 549 : NCSUB.SEE)

» 19884 59 : NCSUMSEE)

»1993d 5¢ : NCSUPhD in
Computer Eng)

=199 39 ~ @A) AR St

AT W

LA ER, o= & yEsa




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


