
리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜
Resilient Security Protocol for Combating Replay Attacks in Wireless Sensor

Networks

장 적
*
, 허 웅

*
, 유강수

**
, 최재호

*

전북대학교 전자공학부 영상정보신기술연구센터*,

전주대학교 교양학부**

Di Zhang(zhangdi_cn@jbnu.ac.kr)*, Ung Heo(heoprinc@jbnu.ac.kr)*,

Kangsoo You(gsyou@jj.ac.kr)**, Jaeho Choi(wave@jbnu.ac.kr)*

 요약

자원이 제한되어 있는 센서 노드에 보안 프로토콜 기능을 부여할 때에는 항상 어려움이 동반된다. 다양한

인증 기법들 중에서 NEKAP은 지역적 특성을 활용하는 비교적 효과적인 프로토콜이다. 반면, 이 기법은

룹홀 형성이 가능하여 리플레이 공격에 취약한 점이 있다. 본 논문에는 NEKAP의 약점을 보완하여 무선

센서 네트워크가 리플레이 공격을 효과적으로 방어할 수 있도록 향상된 인증 기반 보안 프로토콜을 제안한

다. 제안한 기법에서는 네 개의 보안 키를 각 노드에 부여하여 지역과 계층적 요구에 적합한 보안을 제공한

다. 제안한 기법의 성능은 보안 인증, 공격 노드의 탐지, 리프레이 공격 방어 등의 측면에서 분석적 기법을

사용하여 평가하였으며 기존의 기법과 비교하였을 때 제안한 기법이 더 좋은 결과를 나타내었다.

 ■ 중심어 :∣무선 센서 네트워크∣보안인증∣리플레이 공격∣보안 프로토콜∣

Abstract
Due to the resource limitations of sensor nodes, providing a security protocol is a particular

challenge in sensor networks. One popular method is the neighborhood-based key agreement

protocol (NEKAP). NEKAP is an efficient and lightweight protocol, but it includes loopholes

through which adversaries may launch replay attacks by successfully masquerading as legitimate

nodes. In this paper, we present a modified security protocol for wireless sensor networks. We

provide four types of keys for each node, which adapt to different security requirements; and an

improvement is made to alleviate the replay attack. According to our qualitative performance

analyses, the proposed security protocol provides effectiveness in terms of authentication

security, attacking node detection, and replay attack resilience when compared to the

conventional method.

 ■ keyword :∣Wireless Sensor Networks∣Authentication∣Replay Attack∣Security Protocol∣

접수번호 : #100504-003

접수일자 : 2010년 05월 04일

심사완료일 : 2010년 06월 16일

교신저자 : 최재호, e-mail : wave@jbnu.ac.kr

I. INTRODUCTION

Wireless sensor networks (WSNs) are distributed

systems consisting of a large number of sensor nodes

with a base station as a controller that serves as the

interface between the sensor network and the outside

리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜 71

network. WSNs may be deployed in unattended and

adversarial environments such as battlefields.

Compared to conventional networks, they are more

vulnerable to physical destruction and man-made

threats. Therefore, providing security is a particular

challenge in sensor networks due to the resource

limitations of sensor nodes, wireless communications,

and other related concerns. As a specific example, it

is impractical to use asymmetric crypto-systems in

sensor networks in which each node has low

operational capability and insufficient memory (e.g.

Crossbow’s MICA2/MPR400CB sensor node [1]).

Thus, the key management protocols for sensor

networks are based upon symmetric key algorithms,

and the design of the security protocols for WSNs

should be as lightweight as possible.

NEKAP [2] is a link layer key agreement protocol

for sensor networks that establishes two kinds of

keys: pairwise keys, for link layer pairwise

communications, and cluster keys, for link layer

broadcast communication. In NEKAP, the node keys

are generated from the master keys of the neighbor

nodes, making the discovery of these keys more

difficult for enemies. To establish all of the keys, each

node broadcasts only three messages, so the protocol

is very energy-efficient. The main contribution of

NEKAP is the implementation of a key agreement in

which each key is valid only in its neighborhood, and

therefore the impact of a compromised node key can

be restricted to that node’s neighborhood. Thus, it is

impossible for an adversary to carry out a wide-scale

attack by capturing only a few nodes. Moreover, the

energy cost of this solution is lower than that of

previous solutions.

NEKAP has many advantages for WSNs because it

is intruder resilient and energy efficient.

Unfortunately, NEKAP is vulnerable to replay attacks

[3] because of the key establishment process, which

includes only three broadcast messages. A malicious

node may transmit an old message that was originally

broadcasted from a legal node to its neighbor nodes,

and the message cannot be authenticated because

these two nodes cannot communicate directly (see

Section Ⅱ). Therefore, a malicious node may gain

legal status by cheating the chosen legal nodes by

transmitting the old message, and then an adversary

may launch other attacks, such as DOS [4] attacks,

black-hole attacks, or masquerade attacks. In

addition, NEKAP suffers from node tampering during

network initialization. The problem stems from an

irrational assumption made on the relationship

between the secure key establishment time and the

node tampering time. It will be discussed in detail in

Section II.

Therefore, this work is motivated by solving the

drawbacks in both LEAP and NEKAP protocols

without carrying more resource consumption. In this

paper, we present a modified NEKAP that can

prevent replay attacks, and we present a new

modified security protocol for wireless sensor

networks. The focus of the paper is to dismantle the

unreasonable time assumption made in NEKAP and

making the authentication and security protocol of us

be much general and resilient.

The rest of the paper is organized as follows. In

Section Ⅱ, we review related studies that have

previously presented security protocols for sensor

networks, provide an overview of NEKAP, and we

describe loopholes in NEKAP that may be exploited

by adversaries to launch replay attacks. In Section Ⅲ,

we discuss our system and assumptions, and present

the details of our modified security protocol. We

present a security and performance analysis in

Section Ⅳ, and provide our conclusions in Section Ⅴ.

한국콘텐츠학회논문지 '10 Vol. 10 No. 772

II. RELATED WORKS

Link layer key agreements between neighboring

nodes are fundamental for securing sensor networks

deployed in unattended and hostile environments [5].

There are several relevant approaches presented in

the literature [6-8]. Link layer key agreements allow

two nodes to communicate directly via a shared

pairwise key.

The localized encryption and authentication protocol

(LEAP) [9] was first proposed by Zhu, et al., as a key

management protocol for sensor networks designed to

support in-network processing. LEAP solves the

problem of key distribution and restricts the impact of

a compromised node on the network. LEAP

establishes four types of keys, for each node and

communication type: 1) the individual node key,

which is shared between each node and the base

station and is used to communicate with the base

station, is pre-loaded before its deployment; 2) the

pairwise key, which is shared between a node and

each one of its neighbors, is used in pairwise

communication among them; 3) the cluster key, which

is shared between a node and all of its neighbors, is

used in local broadcast communication; and 4) the

group key, which is shared by all nodes, is used in

broadcast multi-hop from the base station. In sensor

networks, the use of a pre-deployed key is the most

practical approach for bootstrapping secret keys in

sensor nodes. In LEAP, the nodes were loaded before

they were deployed in the sensor field. Pairwise keys

could be generated between two nodes based on this

pre-deployed key information. The problem with

LEAP is the excessive number of messages that must

be exchanged during the establishment of the keys;

the communication cost is very high.

Oliveira, et al., presented SPINS [10], a security

protocol for WSNs, and proposed two building

security blocks optimized for sensor networks: SNEP

and μTESLA. SNEP provides end-to-end data

confidentiality, two part data authentication, and data

freshness between the base station and each node; μ

TESLA is a protocol that provides multihop

broadcasting from the base station.

Since NEKAP is a peer-to-peer approach, it can be

used in combination with the SNEP or μTESLA

protocols to increase security for sensor networks.

1. Overview of NEKAP
NEKAP is a link layer key management protocol

that establishes two kinds of keys: pairwise keys, for

link layer pairwise communication; and cluster keys,

for link layer broadcast communication. It is similar to

LEAP, however, NEKAP is more resilient to node

tampering and is even more energy-efficient.

In NEKAP, each node is pre-loaded with a master

key, and broadcasts to its neighbors using this key

encrypted with a global shared key. The node keys

are generated from the master keys of neighbor

nodes, making the discovery of these keys more

difficult for an adversary. To establish all of the keys,

each node broadcasts only three messages, so the

protocol is very energy-efficient.

Since the key is valid only within its neighborhood,

and since the impact of a compromised node key can

be restricted to the node’s neighborhood, NEKAP is

also intruder resilient.

2. Loopholes of NEKAP
In NEKAP, the process of key establishment consists

of only three broadcast messages, which are broadcast

from each node to its neighbor nodes. NEKAP can

provide data confidentiality, but it cannot provide

broadcast authentication during the key establishment

phase. Thus, the nodes are vulnerable to replay attacks.

In replay attacks, malicious nodes are deployed in a

리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜 73

sensor network during the initialization phase. If the

malicious node retransmits legitimate old messages

previously broadcast from a legal node to another that

cannot communicate directly, the malicious node can

pass itself off as a legal node in the network, as

shown in [Figure 1].

In [Figure 1], the malicious node retransmits node

A’s broadcast messages to node B, so that node B will

then regard the malicious node as node A. Similarly,

the malicious node can also act as a neighbor node B

to node A if it retransmits node B’s broadcast

messages to node A. Actually, however, nodes A and

B cannot communicate with each other directly, and

the malicious node acts as an intermediate node

between nodes A and B in the network. The malicious

node cannot threaten the security of its region when

it is between two nodes that can communicate

directly, however. [Figure 1] shows an example of an

attack by one node, and [Figure 2] shows an example

of an attack by two nodes.

Combining these two conditions, random diffusion

with several malicious nodes will confuse the

framework of the network (as shown in [Figure 3]).

The adversary can then execute a DOS attack or a

black-hole attack after the routing is established.

Another problem comes from the time assumption

made in NEKAP (also in LEAP). It assumes that

there exists a lower bound on the time interval Tmin,

which is a necessary time for an adversary to

compromise a sensor node, and that the time Test for

a newly deployed sensor node to discover its

immediate neighbors is smaller than Tmin. Even

though it can be practically a reasonable assumption

that Tmin＞Test, however, if an adversary can

compromise a sensor node within the time interval

Test, it can discover all of the information in the node,

and can then decrypt all of the broadcasting

information using the taken global key.

In the next section, we present a better protocol

that can alleviate the time assumption and improve

resilience against replay attack while keep the

resource consumption at the comparable level as in

conventional method.

Node A

Node C

Node B

Malicious Node

Fig. 1. Replay attack by one node

Node A

Node C

Node B

Malicious Node A

Malicious Node B

Fig. 2. Replay attack by two nodes

 Sensor Node Compromised Sensor Node

 Malicious Node

Fig. 3. Replay attack by more than two nodes

한국콘텐츠학회논문지 '10 Vol. 10 No. 774

III. PROPOSED METHOD

1. System and Assumptions
We assume that a typical sensor network forms

around one or more base stations acting as the

controller (or key server) with sufficient power,

memory, and computational capabilities to serve as

the interface between the sensor network and the

outside network. The sensor nodes establish a routing

forest, with a base station at the root of every tree.

However, we assume that the base station will not be

compromised. In such a system, node deployment is

random, the neighborhood of any node is not known

in advance, the wireless communication is not secure,

and the system is subject to eavesdropping, package

insertion, and replay of older messages. The nodes

are vulnerable to tampering. We assume that if a

node has been compromised, the enemy has access to

all of the information handled by that node.

2. Notation
The following symbols are used in the text:

-  : Node identifier, MAC address;

-  : Pseudo-random function;

-  : Global key shared in each node;

-  : Master key, known only by the BS;

-  : Individual key of node A;

- 
′ : Cluster key of node A;

-  : The nth key of node A’s one-way key chain

for local broadcast authentication;

- 
 : Identification key of node A;

-  : Identification master key, known only by

the BS;

-  : Pairwise key shared between nodes A and B;

- ∈ : The insertion key used for new node
insertion in the insertion phase;

-  ⇒  : Broadcast message sent by BS;

-  : The encryption of message M with

encryption key K;

-  : Denotes the encryption of message

M, with key K and the initialization

vector IV which is used in

encryption modes;

-   : Denotes the computation of the

message authentication code

(MAC) of message M, with

MAC key K.

3. Protocol Description
As in LEAP and NEKAP, the design of our protocol

supports multiple keying mechanisms, following the

observation that different types of messages

exchanged between sensor nodes have different

security requirements, and that a single keying

mechanism is not suitable for meeting all of these

different security requirements. Specifically, we

support the establishment of four types of keys for

each sensor node: an individual key shared with the

base station, a pairwise key shared with another

sensor node, a cluster key shared with multiple

neighboring nodes, and a global key shared by all of

the nodes in the network.

Our protocol also includes an efficient protocol for

local broadcast authentication based on the use of

one-way key chains.

In order to prevent replay attacks, our protocol

provides a malicious node detection phase to detect

and remove any malicious nodes that may exist in the

network.

In addition, we provide a new bootstrapping method

in our protocol that solves the security threat of the

initialization phase (detailed in Section Ⅳ).

Our procedure is described as follows:

리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜 75

1) The Initialization Phase
Step 1: Each node is pre-loaded with a unique

number as its node identifier(ID).

Step 2: The controller creates a master Key ()

and an identification master key() for all nodes

that is known only by the base station(BS).

Step 3: Compute and install an identification key

(
) for each node A:

 
   (1)

Step 4: Each node A pre-loads its individual key

(), cluster key(
′), and global key():

   


′ 

(2)

2) The Broadcast Phase
Step 1: When the broadcast phase starts each node

broadcasts a message to its neighbor nodes:

  ⇒  
′ 


′ (3)

Step 2: There is a short waiting phase for all nodes

to complete broadcasting of messages.

Step 3: The base station (BS) broadcasts and

reveals the identification master key() to all nodes.

  ⇒  (4)

The neighbor nodes can compute the identification

key (
) of node A, and they can then decrypt the

packet to get the cluster key of node A, the first key

of node A’s one-way key chain for local broadcast

authentication and verify the identification of the

packet. At last, the identification key (
) and

identification master key () are erased.

Step 4: When the node has finished the above

process, it will broadcast its neighbor nodes list to its

neighbor nodes:

  ⇒  ∈′ 
∈′  ′

(5)

Node A’s neighbor nodes B can receive the list

from node A, and the pairwise key() between

nodes A and B will be:

   
′ ′ ∈∩ (6)

The pairwise key between nodes A and B is

computed using their cluster keys and the identifiers

of their common neighbors. This makes it more

difficult for adversaries to compromise the network.

For example, in [Figure 1], the common neighbor of

nodes A and B is node C.

3) Malicious Node Detection and Diagnosis
Phase

In a replay attack, a malicious node stores a

received message and attempts to send it at a later

time. When the nodes receive the message, they

believe that it is an original message, even though it

is not. That causes the nodes to calculate incorrect

distance and signal strength since the node sending

the original message is not where they think it is.

Most proposals for preventing a replay attack

rely on a timestamp or sequence number. The

timestamp method must be supported by a

한국콘텐츠학회논문지 '10 Vol. 10 No. 776

synchronization mechanism, which is a complex

computation and therefore consumes a great deal

of energy. The method based on the sequence

number is not applicable to our sensor network

since the compromised nodes cannot

communicate directly.

In our protocol, we implement a malicious node

detecting and diagnosing mechanism based on the

acknowledgment message (ACK) to solve the above

problems.

Step 1: When node A receives a message from node

B, an ACK is generated and sent to node B. This

ACK message must be encrypted by the pairwise

key() to avoid fabrication by an adversary.

 ⇒    (7)

The message is then saved in a temporary buffer

until the ACK comes back.

Step 2: Node B resets timer when it receives the ACK,

and then it decrypts the MAC message to verify this ACK.

If the ACK is authentic, node B will add a timestamp TB

before this message is sent back to node A.

 ⇒   




(8)

If the ACK is received in a certain amount of time,

then the node is an honest node, but if the message

is not received in that amount of time, then it is a

dishonest node, and the message may have been

transmitted by a malicious node. Thus, the node will

erase all related information, such as the pairwise key.

(The procedure is shown in [Figure 4]).

4) New Node Insertion Phase

The new node insertion phase is the same as that

of NEKAP, so we have omitted the details of this

phase.

Receive the packet form Node B

Saving the ACK in the buffer and
i nitialize the timer

Receiving the ACK and sent the
ACK Back to Node A

Sent the ACK to Node B

Check if the
ACK

received in a
certain time

Node B is a
honest node

Node B is a
dishonest node

Yes

No

Sent the ACK back to Node A

Delete all related information of
Node B

Time
Node B Node A

Time

Fig. 4. The procedure for malicious node
detection and diagnosis

IV. SECURITY AND PERFORMANCE
ANALYSIS

In this section, we discuss some issues and

problems regarding our modified protocol.

1. Security Analysis:
1.1 Key discovery by the adversary
The keys provided in our protocol can be used to

authenticate all link layer messages. By discarding

non-authenticated messages, the nodes provide access

control to the network communication. Access control

prevents external nodes from successfully

리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜 77

implementing several kinds of attacks such as the

insertion of false data, data modification, spoofing, and

attacks of denial of service in routing including black

hole, selective forwarding, and wormhole attacks.

Therefore, an enemy can use internal attacks only, and

to do this it needs to have information about the keys.

The adversary can discover the keys by

eavesdropping and cryptanalysis or by tampering

with a node, which are expensive processes. These

attacks can only reveal a limited number of keys

during network operation.

Due to several similarities, LEAP[9] and NEKAP[2]

were chosen for comparison with our modified

protocol (as shown in [Table 1]).

[Table 1] presents a comparison between the

number of keys that can be discovered using several

kinds of attacks in LEAP, NEKAP, and our modified

method. We can see that both LEAP and NEKAP are

vulnerable during the network initialization phase,

since their bootstrapping methods for key

establishment are almost the same. For that reason,

we have developed a new bootstrapping method.

1.2 About the new bootstrapping method
LEAP and NEKAP are based on an important

shared assumption. They assume that there exists a

lower bound on the time interval  that is a

necessary time for an adversary to compromise a

sensor node, and that the time  for a newly

deployed sensor node to discover its immediate

neighbors is smaller than  . In reality, it seems

a reasonable assumption that    , but if

an adversary can compromise a sensor node within

the time interval  , they can discover all of the

information in the node, and can then decrypt all of

the broadcasting information using the global key.

During operation or initialization phases

Attack LEAP NEKAP Modified
Method

1. Node tampering
 during network
 operation

Only
node
keys

Only
node
keys

Only
node
keys

2. Node tampering
during network
initialization

All
keys of
network

Some
keys

No
effect

3. Global key discovery
during network
operation

All
keys of
network

None None

4. Global key discovery
during network
initialization

All
keys of
network

All
keys of
network

None

Table 1. Key Discovery Comparison

In our protocol, we don't need the time assumption as

in NEKAP, because we provide the new bootstrapping

method. In LEAP and NEKAP, the message is

encrypted by the global key, which should be

pre-loaded to all of the nodes at the initialization phase.

In chance, the adversary can compromise a node and

get the information e.g. master keys or global key, then

fabricate some message to intrude into the network.

But in our protocol, each node sends

“′  
” to its neighbor nodes. Notice

that each node does not know the identification key

(
) of any other node since that is constructed from

the identification master key (). Even if the

adversary compromises a sensor node within the time

interval  , it cannot decrypt any packets. The

adversary does not know any node’s information except

that of the compromised node before the identification

master key () is revealed. In other words, this

packet cannot be fabricated and falsified, since nobody

can decrypt the message without the identification

master key (), and the identifier contained in the

packet can authenticate the same one outside.

The difference between NEKAP and our modified

protocol is that the nodes in the cluster group can

한국콘텐츠학회논문지 '10 Vol. 10 No. 778

complete keys exchanges safely because these two

master keys is only known by the base station, and these

keys are release only during a meaningful duration so

that the keys are used securely at the initiation time.

The construction of the pairwise key is also based

on the neighbor nodes. Therefore, our modified

protocol also has the positive characteristics of

NEKAP, including the fact that it is intruder resilient.

1.3 About the malicious node detecting and
diagnosing mechanism

In order to solve the threat of a replay attack, we

present a malicious node detecting and diagnosing

mechanism based on the acknowledgment message.

MAC layer timestamping is an effective method for

improving the precision of our malicious node

detecting and diagnosing mechanism. However, it

cannot be used without adaptation. Since an ACK

packet is encrypted after it is time stamped, the

sending time of the packet will be later than the

timestamp. The difference between the two times

consists of the encryption time (tencryption), the MAC

calculation time (tMAC-calculation), and the transmission

time of the timestamp signal (ttimestamp), as shown in

[Figure 5].

∆  
   




 ×

(9)

Here,  is the encryption time of a single byte.

In our mechanism, the timestamp is added at the

moment tx before the packet is encrypted, as shown

in [Figure 5]. We set the timestamp to the time ty

when the packet is actually sent in the MAC layer.

Preamble CRC

Ty

Preamble CRCTy

Preamble Data CRCTy HMAC

HMAC

Preamble Data CRCTy HMAC

Node A

Node B

Tx

tencryption

tMAC- calculation

ttransmission

Ty

Ty Data

Data

Add timestamp in the packet

Encrypt the packet

Add MAC in the packet

Fig. 5. Error of timestamping in MAC layer
when the ACK message is sent back to
Node A

This method takes advantage of the fact that

sending ACK through a malicious node would take

longer than if it were transmitted directly. If the ACK

is received in a certain amount of time, then the node

is an honest node, but if the message is not received

in that amount of time then it is a dishonest node, and

the message may have been transmitted by the

malicious node. The amount of time (Tthreshold) can be

more precise with the help of ∆ .

        ∆
(10)

Here,  is the duration of the transmission time

for the ACK message to be sent from node A to node

B;  is the duration of the transmission time from

node B to node A.

Therefore, proper detection and diagnosis of

malicious nodes will help our sensor network safely

build a routing table.

This is a lightweight and effective protocol. The

controller can detect and define most malicious nodes,

and can then dispose of the malicious nodes.

리플레이 공격 방어를 위한 무선 센서 네트워크 보안 프로토콜 79

2. Performance Analysis:
We consider the following performance metrics in

our protocol.

2.1 Communication Overhead
Let n be the total number of nodes, let v be the

average number of neighbors, and N(n) be the number

of all messages transmitted for key establishment.

The cost of node deployment for LEAP in terms of

the number of transmitted messages is one message

from node (n), a response from each neighbor in the

neighbor discovery phase(n,v), and one message to

each neighbor for the cluster key announcement (n,v),

resulting in N(n,v):

   ×××× ×
 

(11)

In NEKAP, the cost of node deployment is one

message from node (n), one message to send the

master key (n), and one message to complete the

neighbor announcement, resulting in N(n):

   ×××
 

(12)

In our protocol, the cost of node deployment is only

one message to send the master key (n), plus one

message to complete the neighbor announcement (n),

resulting in N(n):

   ××
 

(13)

Thus, in our protocol, there are only two broadcast

messages that need to be transmitted during the key

establishment phase, and the malicious node detecting

and diagnosing mechanism is a lightweight protocol,

so the communication overhead required is very low.

2.2 Computational Overhead
The main computational overhead for each node is

to verify a MAC and to establish a pairwise key

with every neighbor node. All of these processes are

easy to complete, so the computational overhead is

also low.

Messages transmitted for
key establishment

LEAP NEKAP
Modified
Method

N(n,v) (1+2v)n 3n 2n

Table 2. Communication Overhead Comparison

V. CONCLUSIONS

We have presented a modified protocol for wireless

sensor networks, which not only has the advantages

of NEKAP, but also solves some of the security

problems of NEKAP. The properties of our protocol

are as follows:

• Our protocol supports four types of keys per

node. These keys can be used to increase the security

of many non-secure protocols.

• We use a new bootstrapping scheme during the

key establishment phase to prevent an adversary

from compromising a sensor node.

• Our protocol provides lightweight, effective

malicious node detection and diagnosis based on the

acknowledgment message.

• To generate the keys, our protocol requires only

two broadcasted messages from each node, and therefore

is energy-efficient and appropriate for use in WSNs.

참 고 문 헌

[1] Http://www.xbow.com/Support/Support_pdf_fi

les/getting_started_guide.pdf

한국콘텐츠학회논문지 '10 Vol. 10 No. 780

[2] S. De Oliveira, H. C. Wong and J. M. Nogueira,

"NEKAP: Intruder Resilient and Energy

Efficient Key Establishment in Sensor

Networks," Proc. of ICCCN'07, pp.803-808,

Honolulu, Hawaii, USA, 2007.

[3] M. Vella and A. Mahdy, "Survey of wireless

sensor network security," Proc. of SACNAS

'08, pp.128-134, Salt Lake, Utah, USA, 2008.

[4] D. Raymond and S. Midkiff, "Denial-of-Service

in Wireless Sensor Networks: Attacks and

Defenses," IEEE Pervasive Computing, Vol.7,

No.1, pp.74-81, 2008.

[5] Y. Zhou and Y. Fang, "Scalable Link-Layer Key

Agreement in Sensor Networks," Proc. of MILCOM

‘06, pp.1-6, Washington, D.C., USA, 2006.

[6] L. Eschenauer and V. D. Glicor, "A

key-management scheme for distributed sensor

network," Proc. of 9th ACM conference (CCS

‘02), pp.41-47, Washington, D.C., USA, 2002.

[7] H. Chan, A. Perrig, and D. Song, "Random key

predistribution schemes for sensor networks,"

2003 IEEE Symposium on Security and Privacy,

Berkeley, pp.197-215, CA, 2003.

[8] D. Liu, P. Ning and R. Li, "Establishing Pairwise

Keys in Distributed Sensor Networks," ACM

Transactions on Information and System

Security, Vol.8, No.1, pp.41-77, 2005(2).

[9] S. Zhu, S. Setia and S. Jajodia, "LEAP: efficient

security mechanisms for large-scale distributed

sensor networks," 10th ACM Conference (CCS '03),

pp.62-72, Washington D.C., USA, 2003(10).

[10] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen,

and D. E. Culler, "SPINS: security protocols for

sensor networks," in Wireless Networks,

pp.521-534, Kluwer Academic Publishers,

Netherlands, 2002.

저 자 소 개

장 적(Di Zhang) 준회원
▪2008년 7월 : South-Central

University for Nationalities(공

학사)

▪2010년 7월 : 전북대학교 전자공

학과(공학석사)

 <관심분야> : cryptography, security protocols

허 웅(Ung Heo) 정회원
▪2002년 2월 : 전북대학교 컴퓨터

공학과(공학사)

▪2004년 2월 : 전북대학교 컴퓨터

공학과(공학석사)

▪2004년 2월 ～ 현재 : 전북대학교

컴퓨터공학과(박사수료)

 <관심분야> : 모바일 통신 프로토콜 성능 모델링

유 강 수(Kangsoo You) 정회원
▪1994년 2월 : 전북대학교 컴퓨터

공학과(공학석사)

▪2006년 8월 : 전북대학교 영상공

학과(공학박사)

▪2006년 9월 ～ 현재 : 전주대학교

교양학부 교수

 <관심분야> : 영상처리, 멀티미디어시스템

최 재 호(Jaeho Choi) 정회원
▪1985년 5월 : NCSU(B.S.E.E)

▪1988년 5월 : NCSU(M.S.E.E)

▪1993년 5월 : NCSU(Ph.D in

Computer Eng)

▪1994년 3월 ～ 현재 : 전북대학교

전자공학부 교수

 <관심분야> : 센서 네트워크, 애드 혹 네트워크

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

