DOI QR코드

DOI QR Code

Computer Simulation and Verification of Adiabatic Temperature and Apparent Activity Energy of the NiO/Al Aluminothermic System

  • Song, Yuepeng (Mechanical and Electronic Engineering College, Shandong Agricultural University) ;
  • Zhu, Yanmin (Mechanical and Electronic Engineering College, Shandong Agricultural University) ;
  • Gao, Dongsheng (College of Horticulture Science and Engineering, Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments Shandong Agricultural University) ;
  • Guo, Jing (Mechanical and Electronic Engineering College, Shandong Agricultural University) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • Received : 2013.09.28
  • Accepted : 2013.10.24
  • Published : 2013.10.28

Abstract

Recently, self-propagating high-temperature synthesis (SHS), related to metallic and ceramic powder interactions, has attracted huge interest from more and more researchers, because it can provide an attractive, energy-efficient approach to the synthesis of simple and complex materials. The adiabatic temperature $T_{ad}$ and apparent activation energy analysis of different thermit systems plays an important role in thermodynamic studies on combustion synthesis. After establishing and verifying a mathematic calculation program for predicting adiabatic temperatures, based on the thermodynamic theory of combustion synthesis systems, the adiabatic temperatures of the NiO/Al aluminothermic system during self-propagating high-temperature synthesis were investigated. The effect of a diluting agent additive fraction on combustion velocity was studied. According to the simulation and experimental results, the apparent activation energy was estimated using the Arrhenius diagram of $ln(v/T_{ad}){\sim}/T_{ad}$ based on the combustion equation given by Merzhanov et al. When the temperature exceeds the boiling point of aluminum (2,790 K), the apparent activation energy of the NiO/Al aluminothermic system is $64{\pm}14$ kJ/mol. In contrast, below 2,790 K, the apparent activation energy is $189{\pm}15$ kJ/mol. The process of combustion contributed to the mass-transference of aluminum reactant of the burning compacts. The reliability of the simulation results was experimentally verified.

Keywords

References

  1. A. G. Merzhanov and I. P. Borovinskaya: Int. J. Self- Propag. High-Temp. Synth., 17 (2008) 242. https://doi.org/10.3103/S1061386208040079
  2. H. C. Yi, J. J. Moore: J. Mater. Sci., 25 (1990) 1159. https://doi.org/10.1007/BF00585421
  3. L. L. Wang, Z. A. Munir and Y. M. Maximov: J. Mater. Sci., 28 (1993) 3693. https://doi.org/10.1007/BF00353167
  4. T. Wang, Y. X. Lu, M. L. Zhu and J. S. Zhang: Mater. Review, 14 (2000) 3.
  5. J. Pei, J. T. Li, R. Liang and K. X. Chen: Ceram. Inter., 35 (2009) 3269. https://doi.org/10.1016/j.ceramint.2009.05.019
  6. J. Pei, J. T. Li, G. H. Liu and K. X. Chen: J. Alloys Comp., 476 (2009) 854. https://doi.org/10.1016/j.jallcom.2008.09.166
  7. J. Pei, J. H. Yang, L. Mei and J. T. Li: J. China Ceram. Soc., 37 (2009) 1669.
  8. D. Vrel, A. Hendaouri, P. Langlois, S. Dubois, V. Gauthier and B. Cochepin: Int. J. Self-Propag. High-Temp. Synth., 16 (2007) 62. https://doi.org/10.3103/S1061386207020021
  9. V. N. Sanin, V. I. Yukhvid, A. E. Sytschev and N.V. Sachkova: Microgravity Sci. Tech., 22 (2010) 53. https://doi.org/10.1007/s12217-008-9104-6
  10. V. N. Sanin, V. I. Yukhvid, A. E. Sytschev, N.V. Sachkova and M. Y. Shiryaeva: Inorg. Mater., 45 (2009) 635. https://doi.org/10.1134/S0020168509060119
  11. S. Yin: Combustion Synthesis, Beijing: Metallurgic Industry Press, 2004 (in Chinese).
  12. D. Q. Wang: J. Eur. Ceram. Soc., 29 (2009) 1485. https://doi.org/10.1016/j.jeurceramsoc.2008.09.005
  13. P. J. C. M. Li and C.T. Liu: Mater. Sci. and Eng. A, 357 (2003) 248. https://doi.org/10.1016/S0921-5093(03)00249-1
  14. B. Rupp, J. B. Holt and J. Wong: Calphad, 16 (1992) 377. https://doi.org/10.1016/0364-5916(92)90013-N
  15. http://webbook.nist.gov
  16. D. L. Ye: Practical Thermodynamics Data Manual of inorganics. Beijing: Metallurgic Industry Press, 1981 (in Chinese)
  17. Y. P. Song, H. S. Kim, C. S. Lee, J. T. Li and J. Pei: Mater. Trans., 12 (2010) 2230.
  18. Y. P. Song, Calculation of Adiabatic Temperature and Process Simulation of Ceramic Materials via Thermite Combustion synthesis under Ultra-High Gravity Field, Postdoctoral thesis, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (2009) (in Chinese).
  19. W. W. Ji, Y. P. Song and Y. Yang: Bul. Chin. Ceram. Soc., 28 (2009) 1300.
  20. Y. P. Song, J. T. Li, Z. M. Lin and J. Pei: J. China Ceram. Soc., 37 (2009) 214.
  21. J. C. Lasalvia and M. A. Meyers: Metal. Mater. Trans. A, 26 (1995) 3011. https://doi.org/10.1007/BF02669657
  22. J. B. Holt, D. D. Kingman and G. M. Bianchini: Mater. Sci. Eng. A, 71 (1985) 321. https://doi.org/10.1016/0025-5416(85)90244-7
  23. Y. P. Song, J. T. Li, J. Pei and W. W. Ji: Acta Mater. Comp. Sinica, 27 (2010) 134.