DOI QR코드

DOI QR Code

Sonochemical Synthesis of Amorphous Zinc Phosphate Nanospheres

  • Jung, Seung-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Oh, Eu-Ene (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Shim, Dae-Seob (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Park, Da-Hye (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Cho, Seung-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Bo-Ram (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jeong, Yeon-Uk (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyungpook National University)
  • Published : 2009.10.20

Abstract

Amorphous zinc phosphate nanospheres were prepared via a sonochemical route. Zinc phosphate nanospheres were uniform in shape with an average diameter of 210 nm. The average diameter of nanospheres could be controlled by changing the pH of a precursor solution. This sonochemical method is simple, facile, economical, and environmentally benign. Non-crystalline characteristics of as-prepared zinc phosphate nanospheres were confirmed by X-ray diffraction, transmission electron microscopy, and FT-IR spectroscopy analyses. We believe this technique will be readily adopted in realizing other forms of zinc phosphate nanostructures.

Keywords

References

  1. Alivisatos, A. P. Science 1996, 271, 933. https://doi.org/10.1126/science.271.5251.933
  2. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  3. Zhang, J.; Sun, L.; Yin, J.; Su, H.; Liao, C.; Yan, C. Chem. Mater. 2002, 14, 4172. https://doi.org/10.1021/cm020077h
  4. Geng, J.; Lu, D.; Zhu, J.; Chen, H. J. Phys. Chem. B 2006, 110, 13777. https://doi.org/10.1021/jp057562v
  5. Del Amo, B.; Romagnoli, R.; Vetere, V. F.; Hernandez, L. S. Prog. Org. Coat. 1998, 33, 28. https://doi.org/10.1016/S0300-9440(97)00124-0
  6. Czarnecka, B.; Limanowska-Shaw, H.; Nicholson, J. W. J. Mater. Sci.: Mater. Med. 2003, 14, 601. https://doi.org/10.1023/A:1024018923186
  7. Tada, A.; Itoh, H.; Kawasaki, Y.; Nara, J. Chem. Lett. 1975, 4, 517.
  8. Tagiyev, D. B.; Aliyev, A. M.; Mamedov, N. D.; Fatullayeva, S. S. Stud. Surf. Sci. Catal. 2004, 154, 1049. https://doi.org/10.1016/S0167-2991(04)80923-6
  9. Gier, T. E.; Stucky, G. D. Nature 1991, 349, 508. https://doi.org/10.1038/349508a0
  10. Yuan, A. Q.; Liao, S.; Tong, Zh. F.; Wu, J.; Huang, Z. Y. Mater. Lett. 2006, 60, 2110. https://doi.org/10.1016/j.matlet.2005.12.082
  11. Roming, M.; Feldmann, C.; Avadhut, Y. S.; auf der G$\ddot{u}$nne, J. S. Chem. Mater. 2008, 20, 5787. https://doi.org/10.1021/cm800805f
  12. Yuan, A. Q.; Wu, J.; Huang, Z. Y.; Wu, K.; Liao, S.; Tong, Zh. F. Mater. Res. Bull. 2008, 43, 1339.
  13. Feldmann, C.; Jungk, H.-O. Angew. Chem. Int. Ed. 2001, 40, 359. https://doi.org/10.1002/1521-3773(20010119)40:2<359::AID-ANIE359>3.0.CO;2-B
  14. Dawood, F.; Leonard, B. M.; Schaak, R. E. Chem. Mater. 2007, 19, 4545. https://doi.org/10.1021/cm071147t
  15. Jung, S.-H.; Oh, E.; Lee, K.-H.; Yang, Y.; Park, C. G.; Park, W.; Jeong, S.-H. Cryst. Growth Des. 2008, 8, 265. https://doi.org/10.1021/cg070296l
  16. Geng, J.; Zhu, J.-J.; Chen, H.-Y. Cryst. Growth Des. 2006, 6, 321. https://doi.org/10.1021/cg050235s
  17. Xu, M.; Lu, Y.-N.; Liu, Y.-F.; Shi, S.-Z.; Fang, F. J. Am. Ceram. Soc. 2006, 89, 3631.
  18. Suslick, K. S.; Fang, M.; Hyeon, T. J. Am. Chem. Soc. 1996, 118, 11960. https://doi.org/10.1021/ja961807n
  19. Yu, J. C.; Yu, J.; Ho, W.; Zhang, L. Chem. Comm. 2001, 1942.
  20. Dhas, N. A.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 2368. https://doi.org/10.1021/ja049494g
  21. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3, 955. https://doi.org/10.1021/nl034312m
  22. Mantzaris, N. V. Chem. Eng. Sci. 2005, 60, 4749.
  23. Ogle, K.; Tomandl, A.; Meddahi, N.; Wolpers, M. Corros. Sci. 2004, 46, 979. https://doi.org/10.1016/S0010-938X(03)00182-3
  24. Pawlig, O.; Trettin, R. Mater. Res. Bull. 1999, 34, 1959. https://doi.org/10.1016/S0025-5408(99)00206-8

Cited by

  1. Facile synthesis of mesoporous composite Fe/Al2O3–MCM-41: an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes vol.22, pp.15, 2012, https://doi.org/10.1039/c2jm30451a
  2. In situ reaction kinetic analysis of dental restorative materials vol.64, pp.3, 2013, https://doi.org/10.1051/epjap/2013130361
  3. Physiochemical properties and bioapplication of nano- and microsized hydroxy zinc phosphate particles modulated by reaction temperature vol.3, pp.7, 2015, https://doi.org/10.1039/C4TB01049C
  4. Improvement of the Protective Properties of Alkyd Coatings by Nanosized Phosphate Pigments vol.50, pp.5, 2015, https://doi.org/10.1007/s11003-015-9764-5
  5. NPs–MCM-41 Nanocomposite: An Efficient Photocatalyst for Rapid Degradation of Phenolic Compounds pp.1932-7455, 2015, https://doi.org/10.1021/acs.jpcc.5b01907
  6. Rapid Dissolution of ZnO Nanoparticles Induced by Biological Buffers Significantly Impacts Cytotoxicity vol.30, pp.8, 2017, https://doi.org/10.1021/acs.chemrestox.7b00136
  7. Fabrication of renewable myristic acid based polyurethane nano zinc phosphate hybrid coatings to mitigate corrosion of mild steel vol.47, pp.2, 2018, https://doi.org/10.1108/PRT-12-2016-0120
  8. ZnO nanoparticle preparation route influences surface reactivity, dissolution and cytotoxicity vol.5, pp.2, 2018, https://doi.org/10.1039/C7EN00888K
  9. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7 vol.26, pp.None, 2009, https://doi.org/10.1016/j.ultsonch.2015.01.016
  10. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties vol.175, pp.None, 2017, https://doi.org/10.1016/j.carbpol.2017.07.064
  11. Degradation of ZIF-8 in phosphate buffered saline media vol.21, pp.31, 2009, https://doi.org/10.1039/c9ce00757a
  12. Biomimicked and CPMV-Imprinted Hollow Porous Zinc Phosphate Nanocapsules and Their Therapeutic Efficiency vol.3, pp.9, 2009, https://doi.org/10.1021/acsabm.0c00634
  13. Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate vol.125, pp.4, 2021, https://doi.org/10.1021/acs.jpcc.0c09044
  14. Degradation kinetic study of ZIF-8 microcrystals with and without the presence of lactic acid vol.11, pp.62, 2009, https://doi.org/10.1039/d1ra07089d