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Abstract

This paper presents robustness properties
of LQ regulators for input-delayed systems. Us-
ing frequency-domain representations, the Kalman
inequality concerning the return-difference ma-
trix is derived. The stability margins of LQ
regulators are investigated using the Kalman in-
equality when the open-loop system is stable.

In order to obtain stability margins a upper bo-
und of the solution of LQ Riccati equations is
derived. Finally, the LQG/LTR method to improve
the robustness of LQG regulators is obtained and
illustrated with an example.

I. Introduction

The importance of the robust feedback con-
trol has long been recognized. In classical
frequency-domain techniques for single-input
single-output.system designs, the robustness pro-
blem is naturally handled by various graphical
methods ( e.g., Bode, Nyquist, Nichols plots ).
Commonly used measures of the robustness of sin-
gle-input single-output feedback systems are ga-
in and phase margins. Recently, great attention
has been devoted to the multivariable robust con-
troller designs [1]-[5]). 1In particular, it is
well-known that the L{ regulator for ordinary
systems has good robustness properties [3], [6],
[9]. The LQG/LTR method [l]}, [8] has received
special attention as a robust controller design
method for the output feedback systems. To the
authors' knowledge, however, the robustness pro-
perties of LQ regulators for input-delayed sys-
tems are not reported yet. In this paper, the
stability margins of LQ regulators for input-
delayed systems are analyzed when the systems
are open-loop stable. For this purpose, the ope-
rator-type Riccati equationsare transformed to
algebraic anes in the frequency domain, and the
Kalman inequality is derived based on these fre-
quency-domain relations. A bound of the solu-
tion of Riccati equations is derived when the
systems are open-loop stable.

This paper organized as follows. In Section
2, the stability margins of LQ regulators are
analyzed. The LOG/LTR method, which is the same
as for ordinary systems, is illustrated with an
example in Section 3. Finally, some concluding
remarks are given in Section 4.
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II. Frequency-domain Characteristics of
L) Regulators

It is well-known that L{ regulators for
ordinary systems possess guaranteed stability
margins ; ( 3, ® ) gain margin and +60° phase
margin [6], [9]. 1In this section, a neccessary
condition for optimality of LQ regulators for
input-delayed systems is derived in the frequency
domain, and stability margins are investigated
from this condition.

Consider the linear time-invariant system
with delay in control :

x({t) = A x(t) + By u(t) + By ult-h) (2.1)

with the initial condition

u(b) = g(6), 6 e [-n,0), ° (2.2)

where x(t) ¢ R", u(t) ¢ R™ : A, BO' and Bl are

constant matrices with appropriate dimensions.
Also, consider the quadratic cost function

J(u) f:(x'(t):g x(t) + u'(t)R ult)) 4t

where Q = Q' 2 0 and R = R' » 0.

UUInder stabilizability condition the solu-
tion to this infinite-time regulator problem is
{10}

= -1 ' tp
u(t) = -R (B0E0+B1El(0))x(t)

1

0 L} L}
- | f_h(BOEl(GHBlEZ(O,G) )Blu(t+e)d6,

where E,, E;(8), and E3(n,6) are the solution of
Riccati equations :

-1
0=A'E +EA+Q~-(EB + E_(0)B )R
0 0 Q- 00 1( ) 1)

'(B(‘JE:O + BiE‘.i(O)), (2.5)
d'El(e) -1
———gg—-= A El(e) - (EOB0 + El(O)Bl)R

- (BGE1(8) + BIE,(0,8)), (2.6)



3 -
(-3—+——~) £,(n, @) = (B (B, + B (n,0)B IR .

an 38 2
«(B4E,(8) + BJE,(0,8)) (2.7)

with the boundary conditions

E (-h) = E_, (2.8)

l( ) 0
82(—h,e) = El(e) (2.9)
with Eé = EO, Eé(n,e) = Ez(s,n) for -h s n 50,
-h £ 8 £ 0. Moreover, the optimal closed-loop

system is asymptotically stable, and the optimal
cost is

0
J(u*) = x'(O)on(O) + 2}-{'(0)]_h

E (0)B ¢l0)d0

0 0
+_pd_y #'(WBIE (n,0)B A(5)dnds.

For the convenience of the frequency-domain
representation, we define the following vari-
ables

E (s) -f 9)e ae,
o _ 0 s6
E2(s) -f_hEZ(O,e)e ae,
~ 00 s{g-n}
By(s) = L LpEy(n 0 ° ™ anas, (2.11)
Fy =R (BéEU + BlE (0)),
* (s) = RT(BIE. (s) + BIE (s))B
F.o(s) = OEl s 155 s
F(s) = ( I + F_(s) )_l F
1 0"

Using these variables, the differential equations
(2.6) and (2.7) can be transformed to algebraic
ones in the frequency domain.

Lemma 2.1 Differential equations (2.6)

and (2.7) with the boundary conditions (2.8) and
(2.9) satisfy the following relations in the
frequency domain
"(=s)B. (s) + (E B+ E (0)B )JR™L (s)
atl=s)E) (s 0ot F11VB 0f1
5 -sh
+ B'E + B (0) - B e =9
1 2(5)) l( ) o€ ,
————— (2.12)
- ot £ sh & -sh
Ez(s) + E2(—s) - El(s)e - El(-s)e

an oy ~.-l
+ (B (—s)BO+E2(—s)Bl)h (B

H El(s)+BiE2(s)L

where Als) = sI - A.

Proof : Multiplying both sides of the equa-
tion (2.6) by e and integrating from ~h to 0
with respect to § yield
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580 =
g5 —¢ ae A' E (s) - (B B  + El

-1
oBo (O)Bl)R

- Bé@l(s) + B] B,(s)). (2.14)

Integrating the left-hand side of
(2.14) by parts with the boundary
we obtain the equation {2.12).
Similarly, we can obtain the
tion from the equation (2.7) :

the equation
condition (2.8),

following equa-

0 0 3 3 s(8-n)
J n {_h (g7 *5g)E2(n/0)e an
- o B ;-l
= -(El(—S)BO + Ez(—s)Bl)L B E (s) + By E (s)}).

(2.15)

Integrating the left-hand side of the equation
(2.15) by parts with the boundary condition (2.9)
yields the equation {(2.13). This completes the
proof.

The return difference matrix has played im-
portant roles in the robustness analysis for
ordinary systems (4], [9].

Similarly as for ordinary systems, the re-
turn difference matrix TP(s) for the closed-loop

input-delayed system (2.1) and (2.4) can be de-
fined by
1 1
02 ~-sh, -3
TF(S) =1 + R*F(s)¢(s) (BO + Be RT?,
———————— (2.16)
where
-1
pls) = ( sT - A ) (2.17)

Using this return difference matrix, a neccessary
condition for optimality of LQ) requlators can be
given in the frequency domain, and the stability
margins can be analyzed from that condition.
Theorem 2.1 : LQ regulators for input-delayed
system (2.1) with the cost (2.3) satisfy the
following relation in the frequency domain

* L -1 1 1
Tp () (I+R*F) (f0)R ‘)*(T+R-F1(Jw)F T (w)2T,
——————— (2.18)
for 0 £ w < », where * denotes the conjugate
transpose.
Proof From the definition (2.16) of the

return difference matrix and the definition (2.11),
it follows that

i L
B 22

TL(- ) (T+R7 Fl(-s)R )(I+P2rl( sIRT 1T, (s)
= I+R_%[ 6%1( )B,+B] Ez(s)B +B1E; (-5)By+B) (—S)B
+ (BJE ¥BIEL(0))8(s) (B +B &™)
+ (By+B] e® )@ (-s) (E0B0+E1(0)Bl)
+ Biké;(-s)ao+éé(-s)Bl)n‘l<eéél(s>+3ié2<s))Bl
+ Bi(éi(-s)BO+éé(-s)Bl)h (B! E0+BlEl(0))
ca(s) (B +B ™) (8141501 (2s)
. (EORO+91(O)BI)R'l(ﬂéﬁl(s)+Qi§2(°))Bl



' : .sh ' -1
+ (BO+Ble ) o (—s)(EOB +El(0)Bl)R

0

e” )]R% (2.19)

. (B E +B'Elm»¢(s)(8 +Bl

UUsing the Lemma 2.1, the equation (2.19) becomes

-1
]

e (-s) (I+R~ F (- S)Fz)(I+R Fi(s)R *)Tp(s)

4

1+;a‘5(136+3ie5h)[qu:(s)w' (-S)E+0' (=s)

«(E BO+E (O)B (B EO+B E (0))e(s)]

-(BO+BleSh)R'

N

-sh

[}

I+R~%(B6+Bie5h)¢'(-S)Q¢(S)(B0+Ble JR™ Z.

The last equality in the equation (2.20) follows
from the equation (2.5). With s = jw, the equa-
tion (2.20) becomes

I
(jw)R™?)

* 1 1 1
T (3 I+R?F +RIF_ (Jw)R )T (]
F(]w)( 1 (1 bl(Jw)P ) F(Jw)

Jawh ~jwh

_1 _ * .
= 4RI (B +Be Y e (Jw)Q8(3w) (B *B e JR™E,

The left-hand side of the equation (2.21) is a
Hermitian, while the right-hand side of the equa-
tion (2.21) is of the form I+L*(j)Q L(ju) for

—wh. 1
the matrix L(jw)=6(jw)(B +B e " )R™? . From
the fact that L*(jw)Q L(jw) 2 0, the equation
(2.21) implies the relation (2.18). This com-

pletes the proof.

From the inequality (2.18), it can be seen
that guaranteed stability margins will be obtai-
ned if a upper bound of Fl(jw) is given. In order
to obtain a upper bound of Fj(jw), we will derive
a upper bound of 33E,(8)B +B{E;{0,68)B;. In the

following, o(-) denotes the singular value which
is defined by g(A)= AZ(A A).

Lemma 2.2 : Assume the system matrix A is
stable, then
v(El(e)Bl) < U(Ml(e)), (2.22)
v(BiEz(O'S)Bl) < E(Mz(e)) (2.23)

for ~h £ 8 g€ 0, where y(.+) denotes the consistent

norm defined by (D) = mag|dij| for a n x m ma-
i,j
trix D, ol +) denotes the maximum singular value,
and
. K Ko (-h-8)By
Ml(e) = .
' - ! "{=h- -h—
Bi¢(~h-8)K Bj¢'(-h-8)Ke(-h-0)B,
------ (2.24)
. B]'_KB]_ Bi‘b‘(—e)KBl
Mz(e) =
KO (- ' 2.
BlK ( e)Bl BlKBl (2.25)
with
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K =f°;d>'(t)§2¢(t)dt. (2.26)

Proof : Let V(x{(0),¢) be the value of the
cost {(2.3) for the initial control function ¢(0),
-h 5 6 <0, initial state x(0), and zero control
(u(t)z 0, t 20). Then,

V(x(0),8)

]

f":)x‘(t)Qx(t)d‘t

i

x'(0)f7 0" (£)Qe(e)dt x(0)

+ x'(O)fh J

t-h
! -h-6)B
0 —h¢ (£)Qe(t-h-8) lﬁ(e)dedt

+ x'<0)f;ffh¢-(t>Q¢(t-h_e)Bl¢(e)aeat

+ fEfE;hé'(e)Bi¢‘(t—h—9)Q¢(t)d9dt x(0)

» 0 ,
+fh f_hﬁ(e)Bl¢ (t-h-0)0d(t)dsdt x(0)

h .t-h _t-h

+f of h Iy é(e)B ¢'{t-h-8)0Q0(t-h-06)

© 0 0 _,
. Blﬁ(n)dndedt + fhf_hf_h¢ (8)

‘Bi¢'(t—h—O)Q¢(t—h-n)Blﬁ(n)dndedt,

since with the zero control (ul(t) = 0, t 2z 0)

a(t)x(0) + f ¢(t h-6)B ¢(9)d6.

0 t< h

x(t) =
e(t)x(0) + fog(t-hAe)Bl¢(e)de, tz h.

Let x(0) = €El, 8(8) =g, for 6,56 5 6,%e

-hs 6, < -e, and #(8) = 0 elsewhere. Then, it

follows that

1 » ©
1im ——=V o), = ' (t ) 9
ei? =z (x(0),8) 51f0¢ (t)ge(t)dt gl+glf0¢\t)Q

.¢(t-h—60)dt3152

+ E4BI Y (t=h-00)Qe(t)ate,
+ g4B1e  (t-h-e )0
-th—%ﬂtaﬁz

= [g* '] ;
El E2

K —h-8 )z
K¢(-h e&sl €

Bl¢’(-h-60)K Bi@'(—h—eo)K¢(—h—60)B

14 (82].

And using the optimal cost (2.10), it can be

seen that

E E (6 )}B

. 0
11m——12J(u*) = lgjg )] root :
exl e BIES(8) B

lEZ(e )B



The equations (2.29) and (2.30} yield

E E.(9)B £
0<[El£'| 17071

BiEi(eO) BlEz(eo'eo)Bl £

K Ke(-h-6 )B, 3
sle) ¢ o =
Bjo'(-h-g)K B @' (~h-8K%(~h-80)B, |

Note that for any symmetric positive semidefini-
te matrix D, v(D) £ k if 0 $ diag{(k). &And for
any matrix D, D g diag [g(D)]. Thus, the in-
equality (2.31) gives
<
v(Bl(eo)Bl) s

G(Ml(eo)), (2.32)

since for any block matrix g ={ gzl z2 |,

23 z4
Taking all possible 90, we

G(M;(8)) for -hs8<0 and by

continuity, this holds for ~-h <6 £0. This com-
pletes the proof of (2.22). The proof of boun-
dedness of B (0 e)B is similar to the above.

Let %{(0) =0 and #(9)
g(g) = £, for g, s 8 s

and &(g) =
seen that

V(Zi)é

vwiz), 1 =1,2,3,4.

obtain v(El(B)Bl) s

= . <
gl for el§ 8 =61+E,
82+s with —h+e§el+e§62<-a

0 elsewhere. Then, it can be easily

BiEz(el,el)Bl BiEz(Gl,e )B

2771

B! E2(e ,e )B

B
1 2\9 19)

l

1 ) L}
BlKB Bl@ (ez—el)KBl

1

(3’8 - B'K
BjKe(6,-6,)B) BKB) L(2.33)
From this relation, we can obtain the relation
(2.23). This completes the proof.

Now, we can present stability margins of LQ

regulators for input delayed systems if the sys~
tems are open-loop stable.

Theorem 2.2
stable. Then,

Assume the system matrix A is

g(r (ju) 2 0w <, (2.24)

l+a '

where g(+) denotes the minimum singular value
and

G(R

=m73J R E ] a 3
a=m T Q_(R’)I—{ (M, (8))+3¢ ) }d
——————— {2.35}
Proof : From the Kalman inequality (2.18),
it follows that
o(T (jw)) 2 — . (2.36)
F ol(RZ) _
1+ T G(Li(jn))
g(R2
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llsing Lemma 2.2, we obtain

E(Fl(jw)) < E(p‘l)é( B, (jw)B, +B} £ ,(3w)B))
< mB(R‘l)IO v(3'? (8)B_+3'E_(0,8)B)dd
= -h 701 171727
< mo(R™ )f [ (By)v(E  (8)By)

t

+ v(BjE,(0,0)B,)]ds

- =1 00 -

ng (R B M

< mol )f_h[v( 0)c( l(6))

+ o(M,(6))1d8,
where we have used th¢ fact that g(D) g mey (D)
for any m x m matrix. This completes the proof.

From Theorem 2.2, we can see that L) regu-
lators for input-delayed systems have a guaran-
teed gain margin denoted by GM :

1+ q 1+ a

M A——— ),

> T a > (2.37)

and a guaranteed phase margin denoted by PM

1

PM = cos_l[ 1 - (2.38)

—_—
21+ a)?

simultaneously in each loop of the feedback sys-
tem of Fig.l when the open-loop system is stable.
Note that o is a function of A, BO’ Bl, 0, R, and
delay h. Hence, the guaranteed margins differ
from system to system. However, we can say that
tte guaranteed margins decrease with increasing
h, and increase Uith increasing ¢(R) Since the
de sign parameters are the weighting matrices
a1 R in LQ regulator designs, we can achieve be-
t 2r guaranteed margins of closed-loop systems
by selecting larger weighting matrix R, where
"large" matrix means it has large minimum singu-
lar value. However, the transient response be-
comes slower when R becomes larger. Hence, the
trade-~off between the guaranteed stability margins
and the transient response is necessary.

In single input systems, it is possible to
derive stronger results than in multi-input sys-
tems.

Corollary 2.1 : Assume the open-loop system

is stable and m = 1, then
[T ()] 2 L for0sw<a (2.39)
¥ 1 +8 ! :
where
Lo g ) ' 8 0
B =— /s ylvibyo(m (8)) + biKb, 146, (2.40)

and r, b,,
ables to R,

and b, denote the corresponding vari-
BO’ and B, respectively.

Proof Using the relation (2.33), we obtain

V(b]E,(0,8)b;) = |biE,(0,8)b;| S biKb, ,

-h <8 s0 (2.41)

for single input systems. Hence, it follows that



- ] 10
O(F) (j@)) §:T£h[V(b&V(Eﬂe)bﬂ

1

b'E 8)b 0 .
+ v( lE2(0 ) l)]d B

This completes the proof.

Note that the maximum singular value of
M_(6) is greater than or equal to b'Kb for sin-
gie—input systemns. Therefore, the result in
Corollary 2.1 is less conservative than that in
Theorem 2.2 for single-input systems.

Example 2.1 : Consider the LQ problem speci-

fied by
N 0 1 0
x{t) = -3 _4J x{t) + l) u(t-h), (2,42)
Fta) = 55 {x'(6)Q x(t) + ad(e)} at (2.43)
with
800 80J35"
Q = , h = 0.5
80J35 80

This example is the same as that in [8] except
for the delay h = 0.5. A Nyquist diagram for

the LQ regulator design is given in Fig.2. Gain
margin is (Q.37,2.0) and there is about 11.0°
phase margin. According to Corollary 2.1, it can
be seen that

ITp (30| 2 0.016

and the calculated margins are such that (0.98,
1.02) gain margin and 1.0° phase margin,which

are too strict ones. The result, however, is the
first which represents stability margins in terms
of system parameters explicitly.

III. LOG/LTR Methods

In order to utilize LQ regulators for the
feedback design, all states must be measured.
Since full state feedback can be impossible or
too expensive to realize, LQG regulators have
been extensively used where the Kalman filter is
used to provide state estimates for feedback.

LQG regulators, however, do not possess the guara-
nteed stability margins of LQ regulators [(7].

The LQG/LTR methods improve the stability margins
by recovering the loop transfer function if thLe
minimum phase assumption holds [8]. Note that

it is not always the case that LQG regulators
need to be robustified since in some cases LQG
regulators may have better stability margins

than LQ regulators.

In this section we consider the following
system :

k(t) = Ax(t) + Blu(t—h) + wlt), (3.1)

y(t) Cx(t) + vit), (3.2)
with the initial condition
u(t) = g(t), -hsg t< 0, (3.3)
n m
where x(t) ¢ R, u(t) e R, and y(t) € R ; A,Bl,

and C are constant matrices with appropriate dim-
ensions ; w(t) and v(t) are zero mean white noise

360

with spectral intensity matrices E and O,
respectively. Under the assumption [A,C] is de-
toctable, it is well-known that the state esti-
mate is specified by

%(t)=AR(t)+B u/t-h)+Ic'0™t [y(£)-cRlt)], (3.4)
where
LA +5A'-zc'o”lcr +@=0, 12 0. (3.5)

with the quadratic cost
J{u) = Ef;[x‘(t)Qx(t)+u'(t)Ru(t)]dt, (3.6)
the LQG regulator is given by
alt) = -R7IBYE! (0)&(t)
11
-1 0
~R™*B'S E (0,0)B_u(t+6)ds , (3.7)
1°_n 2 1

where Ei(O) and E_(0,9) is obtained from the
Riccati equations (2.,5)-~(2.9). Since the Kalman
filter for the system (3.1)-(3.3) is the same

as for ordinary stystems, the same LQG/LTR method
to improve the robustness of LQG regulators is
applicable to the systems with delayed input
only. To see¢ this, consider the feedback control
systems in Fig.; and Fig.3. 1In Fig.l, the loop
transfer function from u" to x is given by

x(s) = @(s)%_é_Sh u'(s). (3.8)

In Fig.3, the loop transfer function from u" to
X is given by

%(s) = [1+¢(s)nc]'1[¢Ble‘Shu'+ uc@Ble'Shu"],
——————— (3.9)
where H = ZC'G_l. If the Doyle's condition [8]

alI+ce (s uf s = %_[C@(S)Bl]_l (3.10)

is satisfied, then the equation (3.9) becomes

h

%(s) = ¢(S)Blé_s u"(s) (3.11)

which coincides with the equation (3.8). Thus,
the same filter gain adjustment procedure as for
the ordinary systems [8] will still recover the

loop transfer function and improve the robustness
of LQG regulators for the input-delayed systems.

Example 3.1

0o 1 0 35 :
x(t) = x(t) + u(t-0.5) + w(t), (3.12
-3 -4 1 -61

vy =(2 1] xtt) + v(v) (3.13)
with E(w)=E(v)=0;E[w(t)w(T)]=B[v(t)v(T)]=8(t=T);

performance index is

J(u) =ES (x'i'Hx+u?)ae (3.14)
0
with
H=4J51/35 1].

Consider the following LQG problem



The Nyquist diagrams for the full-state design and pp.607-611, 1979

the observer-based design are shown in Fig.2. The [9] B.D.O.Anderson and J.B.Moore,Linear Optimal
LOQG regulat9r has about (0.99,1.2) gain margin and Control, Prentice-Hall, New Jergy, 1971
less than 2 phase margin, which are much decreased [10]) M.A.Soliman and W.H.Ray,"Optimal feedback
margins compared with those of LQ regulator ;(0.37, control for linear-quadratic systems having
2) gain margin and 11° phase margin. When the fil=- delays,"Int. J. Contr.,vol.15,no0.4,pp.609~
ter gain adjustment procedure is applied to this 627,1972

example, much more improved result is obtained. We
let the process noise covariance be

35 20 r
g = [35 -61] + g [0 1].

~61 1

Fig.3 shows Nyquist diagrams for q =20,30,40,and

50. It is observed that margins are improved as .
the loop transfer function tends toward full-state Fig.l LQ Regulator
design.

IV. Conclusion

In this paper, frequency-domain properties of —— — — p——
LQ regulators for linear input-delayed systems have PR
been investigated. In particular, the guaranteed P 1
stability margins of LQ regulators are presented -
using the sysytem matrices, the weighting matrices, &\\\\\
and delay time when the open-loop systems are sta- TN M 1<:f
ble. To do this, the operator-type Riccati equa- ~—
tions are transformed to algebraic ones, and based
on these, the Kalman inequality concerning the re-
turn difference matrix is derived.

The LQG/LTR method to improve the robustness
of LQG regulators is obtained and illustrated with
an example when there exists delayed control only.

The results in this paper generalize the well- J
known ones for ordinary systems, and can be exten-
ded to more general input-delayed systems. The
robustness properties and the LOG/LTR method for Fig.2 Nyquist Diagrams of LQ and LQG Regulator
systems with delays both in input and in output
remain for further investigations. Finally, it is r 1 u u’ m * . e
remarked that the results in this paper are some- - o1
what conservative, since we have assumed the open-
loop stability and used the singular value as a
robustness measure.

0.27
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