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Block~triangular PDecomposition of a Linear Discrete Large~Scale Systems

via the Generalized Matrix Sign Function

Gwi-tae Park, Chang-hoon Lee

‘Korea Univ.,

Abstract

An analysis and design of large-scale linear
multivariable systems often requires to be block
triangularized form for good sensitivity of the
systems when their poles and zeros are varied.
But the decomposition algorithms presented up to
now need a procedure of permutation, rescaling
and a golution of nonlinear algebraic equations,
which are usually burden. To avoid these problem,
in this paper we develop a newly alternative block
triangular decomposition algorithm which used the
generalized matrix sign function on the Z-plane.
Also, the decomposition algorithm demonstrated
using the fifth order linear model of a distilla-

tion tower system.

1. Introduction

The block-decomposition of linear discrete
time-invariant system offer a major role in the
analysis and design of large~scale systems. In
particular, for a good sensitivity in physical
system realization and modal control of multiva-
riable systems, the system is often formed into
a cascade structure which contains a block trian-
gularized system map.

Because of that, in recent years, the decom~
position methods of block-triangularization has
been studied in state space by many reserchers.
(,2,3 Though the decomposition algorithms“
offer the major advantage of not having to solve
the eigenvalue-eigenvector problem - which is
necessary, for example, in modal decomposition
technique “ they nevertheless require the sclutions
of algebraic equations satisfy a necéssary and

sufficient condition‘(l) Since these equations are

and

In-sung Yim

Institute of Space.Science & Astronomy

generally nonlinear, recursive algorithms for

3
solving them are highly desirable.( ) And these
have to perform a permutation and rescaling proce-

dure of system matrices.

To avoid these problems we develop a newly
alternative block triangular algorithm of a dis~
crete-time large-scale system, which used the

generalized matrix sign function on the Z-plane.

2. The matrix sign function on the Z-plane

We introduce the sign function on the %-plane

as follows:

{pefinition 2.1)
The sign function of a complex variable A

with |A|# 1 on the Z-plane is defined by

X
Sign(r)(h) sign(X:Ej = { t1 when |A]>r

-1 when \X&<r (2-1)

(Definition 2.2}

Let M be the modal matrix of a square matrix

& {nxn) and
o o=t {Jf m Jt)w (2-2)
where M and its inverse W are defined as
- T
LT 4 1‘-‘-[ T:wT] (2-2b)
= WEM =lw W,
" [MUMz] ! 12
and 3t eCn'xn‘ and a’ ecnzxnz’ with nytny= n, are
+ -

the collections of Jordan blocks associated with
r :
the spectrum g(h) Zi and o(®)c Zn, respegtlvely,
r * i d insid lanes
where 7 and Z° are the outside and inside p
+ -

of the referencecircle with radius x on the z-
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plane, respectively. Then

Siqn(r) (B) = M[sign (J:) ® sign (Ji)l W

= M[In1 ® (—Inz)] W (2-3)

The matrix sign function of a square matrix
o, sign(r) (9), with the eigenvalue spectrum

r r
§(hc z* U 2  can be expressed by using the Riesz

ptojector(S) as followsyz
. A, o+
sign (9 = 2s1gn(r)(d>) -1,
= In - Zsign(r)(q’) {2-4a)
where
+ 4 ;
sign(:) 4] -% {In + s.lgn(r)(@}] (2-4b)

sign(r) (» = [In - sign(r’ (4’)]

(¥ - sign(n(O) (2-4c)

To develop methods for the block triangulax
decomposition of a system, we present the follow-
ing definition of the generalized matrix sign

function on the Z-plane,

(Definition 2.3)

tet {lo (]} O {xy, ra}= P, where 0<r,<r,
and {r;, ry}eR. The generalized matrix sign fun-
ction of ® with respect to the circular stripe

{r, , r,) on the 2-plane ig defined as

: A+
ngn(r“tz)(@) = 2519"(1'1,:2) ® + i
= In—ZSign(I. 't‘)('b) - {2~5a)
where

: + A 1
szqn(rh (€3] a[sign‘n)(‘b)

- sign

trs) (%) 1 (2-5b)

sign, (M 4 1

.+
(xy,xr2) n s»gn‘t“rz)(‘b) (2-5¢2)

and from reference (7)

- i —p . ~]‘
Sign(ri’ () = sign [V(CI’ rlln) (d’*xilﬂ) ]

ri=1 for i=1,2 (2-5d)

3. The block-triangularization of a discrete

multivariable systems

In this chapter we propose the block trian-
gular decomposition algorithm for a discrete-time
multivariable systems using by definitions of

chapter 2.

Consider a linear discrete multivariable sys-
tem as follows:

X{k+l) = ®x(k) + @ uik) {3-1a)

y{k} = CX{(k) (3-1b)

Assume that the state X(k} is decomposed into the
ny and n, vectors Xl(k) and xz(k). In this system
the class of eigenvalues located near the unit
circle on the Z-plane are assigned to the slow
mode and those located near the origin are assi~-
gned to the fast mode. Thus we need the refer-
ence circle”} with radius r for block-decomposi-
tion. For system (3-1) the eigenspectrum o(%)

is arranged in decreasing order of absolute

values:
VYRR PYNY EY PTRPS N ERTR P {3-2)

From Eq.(3~2), the positive real value r#l is

chosern between I)\nll and [Antll arbitrary.

Now from Egs.(2-4) and {2-3),we define two

projection operators P:(‘l’) and Pg(d’) as follows: n
x 56 .+ -1
Ps(¢) = sign [('b-rI“) N’H‘In) I
= u[xnl Q"nz] we MW, (3-3a)
it & sign”[(#-r1 ) (drr1)7Y)
£ 9 n n
=M [mﬂl ® '[uz]w = (3-3b)

where P:('l‘) + P;M’) = MWk MWz = T .

It is obvious that Rank(P:(Q))znlv and

Rank (P (#))= n,.

Let matrix S be defined as

s 8 ind[p(®)] = (sisp =+o 5, Jec™™ (3.4
s 1

where S is a monic map which contains ny indepen-

dent column vectors of Pg (€). These independent

column vectors are selected from the n column

r
vectors of Ps('b) ‘and the number of independent
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vectors, n; is equal to the trace of rS ().
s
Thus we obtain the results as follows:
(Lemma 3.1)
n, xn,

There exists a nonsingular matrix HEC

such that

s = MH (3-5)

where M, are defined as in Eq.{2-2b).

Proof) Assume that S contains n, columns of

Ps(¢) with column indices ki for i=1,2, ceseny.

Then, from Eq.(3-4), we obtain

A
S = Ps(fb)ra1 = MjW;E; = M|H , E,
4 [ek', ekz, ceny ekn, ceny ek",]GCn xn
n n n n
(3-6)

where en is elementary column vectors for
i=1,2, ..., nl. According to Sylvester's

inequality, we obtain Rank(H)=nl or H is nonsin-

gular. (Q.E.D.)

The matrix S defined in Eq.(3-4) can be used
for block triangular decomposition of the system
(3-1) as follows:

(Theorem 3.1)

xXn

Let dec™™" ang {ls@ ]1n {ry,rz]| ri<cy)=p,

where {r,, r;J}er.

- 0 -
S1 =500

Define
8 ‘md[Pf(fb)]

nxn,

n

ind [1n - ps(¢)]e c (3-7a)

A T T n,xn
2 2 {inafe <b] ec™
V2 = Vi {]m[s()l}
(3-7h)
Assume that n, + n,=n and n n #0. Let
r st
(cv,r2) | e c™" (3-8)
v
(ri,r2)
where 5" is the left do-i
(r1,r2) e le pseudo-inverse of
s . Then
(ri,r2)
-1 - o
T =15 v -
[ (rn,rz)i (rl,rz)} (3-9)
#
wh v is i ~i s
ere (c1.r2) is the right pseudo-inverse of
v .
(ri,r2) Let
Z(k) = TX(k) (3-10)
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Then the block-triangularized system of (3-1) using

£q.{(3-10) becomes

Z(k+l) = _¢R -g o] @0+ 9{ w3y
Oy pm, E q)l_ 9.

yik)y ={c1teca] 20 (3-11b)
where

& = §:rl,rz) g(rn,rz)'

Y Ve ® Vienen (3-11c)

®an = gzrl,rz)¢ ﬁrlyrz)'

¢ = g?rl,rz) QD
e - Viri,ra) @ . (crcy
= C[é(rlrrz)vﬁrl,rzd‘

and

64 = (A re6(®, ri<|A|<r,) (3-12a)

6(2) = (A[re6(®), Ae (¢L)] (3-12b)
Proof) Theorem 3.1 can be shown in Ref.(8}.

If more than two blocks are desired for the
block-triangularization of ¢, an another sequential

method is considered in the following theorem.

{Theorem 3.2)

et ¢®ec™" and

{js@ {1 n {riGR; i=0,1,..., kJ=0,
where r0<rl(r2 (rk.
Also, let n, be the number of 6(®) lying within

the circular stripe (ri_ ri) for 1 ¢i ¢k and

1
k n, = n. Further, define
Lo
i=1
A k
a ; = ; = 3-13
m = jgi" 5 mio=nyo;omo=n ( )
) (3-14)
R,k
- A L+ o
s, =ind |1 - sign ( X )]
i [ M4l (rjerg,y) Reidd
e c"isl™" (3-15a)
4, .+ T1Te
v, = {ind [(51gn (v .. ) ]
i+l (ri,ri+1) R,i+l
i M (3-15b)

for i=k-1,k-2, ... , 1
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Then, the cascade transformation matrices Tk-l'

«ee ¢+ T, can be formed as

k~2' 1

=1 ki) xm,
€ -
B 8.y C k-1""k

v s Ve MMk

X {3-16a)

-
=[ ¢ '
T, =[S Om e o

(4

xXn

nk_lxnk

w
o
0,
»
i
(N
*
i
-

(3-16b)

L] .
(n-n.-n_)xm_} I n
72,720 n nz)

; E* € Cm,xm:
1

; V.o M2 X (3-16¢c)
2

Z(k) =T

k—lTk-2 see TlX(k)

{3~17)

Then, the block-triangularized system of Eq.{3-1)

using Eq.(3 ~17) becomes

Z(k+l) = ‘sz(k) +®Tu(k) (3-18a)
Yk} =€ X{k) (3~18b)
where
-1, ~1 -1
= eee £33 ce.
Q‘T T-1 PR Tya1
= 1% %2 %3 oo %Rk | ™
0 ¢L.2 0,23 ... L,2k (3-18c)
[o]
0 ¢L,3 ¢b,3k
o Ao 0 ¢L,k
=K - #
= = v
¢R,1 SL®R.251 ' ‘»L,.l v @R,x i
for i=k,k-l, ... , 2
0T= T, e Tle@
T ., T (3-184)
Wx @z Tt @k ]
IS SRS | -1
Cp = Ty - T

= [clcz ck] {3~1Be)
and
s(@g'l) = {(Alres (), r0<|)li<rl }
USRI X e 6@, <]r]<r;,2¢ick}
Proof)

Theorem 3.2 can be proved using Theorem 3.1

and Vv

N ; in Eq.(3-15).

and the definitions of §

4. Numerical Example
The fifth-order linearlized wmodel of a
distillation tower system was discretized

with sampling time of 2 sec, and it can be

represented by:

¢ = [0.86849 0.03754 0.01485 0.00523 0.00824
0.04172 0.03519 0.05052 .0.05059 0.85352
0.71374 0.00054 0.08031 0.03819 0.1346

0.46328 0.13092 0.10921.0.05842 0.33378

0.28531 0.10947 0.10454 0.06559 0.56948]

;Q? ={ 0.00534 0.06989 0.09867 0.09085 0.02699 T
~0.00334 -0.05273 -0.13139 -0.14296 -0.04867

C=[1. 0.0 0 0]

The eigenvalues of ¥ are Alxo.ooozz, A2=o.oo337,
>t3=0.1662, 34=0.85946 and A5=o.979?. Find the
block-triangularized decomposition of this system
map in which the first block matrix contains Xl
and Az, the second consists of Xa, and the third
contains X4 and AS' Thus we choose r;=0.05 and
r2=0.5.
Since the number of submatrices to be deter-
mined is three, k=3, According the Theorem 3.2,
the first transformation matrix TI Eq. {(3~16a) is

~§

where from Eq.{3-15a) and (3-15b), we obtain

z 0.058 0.02314 0.04528
0.11149 0.08364 0.04558
-0.86152 —O.i7632 0,94757
~0.58807 ~0.41985 ~0.05248

-0.31993 -0.66517 ~0.0529

-~ 188 -
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v, = [0-942 -0.2314 0.04528 0.01899 0.00586
3L
L0.11149 0.91636 0,04558 0.06391 0.05892

Thus we obtain
& . 0.17937 0.08142 -0.11126
0.05369 0.03227 -0.02719

0.06845 0.03528 -0.04184

®, 3 = [0.91612 0.02727

0.13078 0.92241

¢L 3 is desired third block matrix which contains
’

Aoand A_.

4 5

Using similar procedures to the reduced-order

model, §R 0 e obtain k=2. Thus
.

i 1.1332 1.1171 -1.2869
sign (rl) @R, 2)
0.68896 ~0.6392 ~0.41564
0.81877 0.42878 ~1.494
81gn(r2) @R,z) = _13

3 = [—0.(}6658 —0.34448 ~<>.40939]T

-0.55856 0.8196 -0.21439

v, = [1.0666 0.55856 -0.64346]

- P
= = . 3 -0.
§R,l EN §R'251 { 0.00103 -0.0005 }

~0.00391 0.00258

- (.
N Vz‘}x,zvz = [0.16619]

and
T, = s 02
2 __l ¢
5 1012
O |1,
X M 2

Thus, the block-triangularized system map becomes

-1 -1
= T
§T T2T1§Tl 2
={ 0.00103 -0.0005 :—0.24339: 0.46449  0.60042]

'
-0.00391 0.00258'-0.10232, 0.29244 ~0.71849

0. 0. ! 0.16619:-0.92495 -0.43124
LT L

0. 0. io. ! 0.91612 0.02727
. ]
' v

0. 0. 1o ! 0.13078 ©0:92241

G, -7 0

=[ 0.18432 0.24649 '-0.12955)0.00998 0.03898
1

-0.29368 0,01265{ 0.14811}-0.00774 ~0,06345

o1 -1
c =
™ T T,

= [0.00671 -0.00373{0.05577{1.61 0.02157)

Note that &‘R L is the first block diagonal matrix

which contains Ay and Az, while the second bhlock

diagonal matrix is As.
5. Conclusions

in this paper, a block triangular decomposi-
tion algorithm for a linear large-scale multivari-
able discrete system is proposed by the matrix

sign function and generalized matrix sign function

on the Z-plane. The proposed decomposition algo-

rithm will be facilitate the study of the effects

on the system when the poles and zeros are varied.

The main contributions of this paper are:

(1) There is no need to find the eigenvectors of

system matrix in this algorithm.

(2) This algorithm do not need a permutatjon and
rescaling procedure.

(3) There is no nred to solve algebraic equatious.
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