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jon was then extended to the coordinated
motion of two menipulators. In this pap-
er, various constraints for time-varying
obstacle avoidance will be identified
and the inherent difficulties in combin-
ing these will be discussed.

ABSTRACT

This paper addresgsses the identificat-
ion of various constresints in time-vary-
ing obstacle avoidance for mechanical
manipulators. ' The manipulator constra-
ints include the smoothness constraint 2. VARIOUS CONSTRAINTS
and torque constraint, while the enviro- )
nmental constraints include a motion
priorty, a traveling time constraint, a
path constreint, and a collison constra-
int. The inherent difficulties in combi-
ning these conatreints are discussed wi-
th a suggestion for the purpose of time-
varying obstacle avoidance.

The prior knowledge required for solv-
ing the time-varying obstacle avoidance
problem includes the description of the
obstacle movement, the initisl and final
location of the manipulator,the phisical
manipulator constraints and the various
environment constraints. The manipulator
congtraints (MC) include the velocity,
acceleration, jerk and torque limitat-
iong. The environment constraints (EC)
include a motion priority, a traveling
time constraint for the manipulator, a
path constraint for the manipulator, and

© the collision constraint between the ma-
nipulator and obstacles.

1. INTRODUCTION

Most of the existing off-line path
planning schemes which concern obstacle
avoidance concentrate on the problem of
avoiding fixed and stationary obstacles
in & workspace. Since the locations of
obstacles are fixed and stationary, the
obstacle aveidance can be achieved thro~-~
ugh collision-free path planning schemes.

A time-varying obstacle is generally
defined a&s an obstacle of which the
position and orientation depend on time.
There exist only few path planning sche-
mes concerning the problem of avoiding
the time-varying obstacles. E. Freund{3]
analyzed the situation of two robots
operating in a common workspece. Since
one robot has the priority to move, the
other wmay be considered as & time-
varying obstacle. Motion commands for
robots are stored in a datsbase so that
collision avoidance of two robots can be
achieved. Fortune et al.[2) developed a

2.1 Traveling Time Constraint

The traveling time constraint is a
specified time period in which a manipu-
lator must complete the desired motion
from one location to snother. If this
constraint does not exist and there ex-
ists a potential collision, a collision-
free trajectory can always be found. In
order to increase the productivity, the
minimum-time collision~free trajectory
is desired for the manipulator movement.

2.2 Motion Priority Constraint

The motion pricrity constraint is
defined as the moving priority. If this

useful algorithm for independent but constraint is given to the obstacle, we
synchronized motion of two Stanford arms, interpret that the manipulator inveolved
Erdmann.et al.[1] wused a configuration needs to change its motion strategy for
space-time technique to represent.the avoiding the potential collision with
constraints imposed on the moving object. the time-varying obstacle. Since it is
The p;anner re?rese?ted the‘space*tlne generally difficult aend impractical to
by using two dimensional slices which modify the trajectory of the time-vary-
were then searched for a collision-free ing obstacle, the priority constraint

path. Tournassoud {6] presented a local
method for collision avoidance based on
the existence of separating hyperplanes
between two manipulators. Its applicat-

should be given to the time-varying obs-—
tacle. Three possibilities may exist for
avoiding a potential collision: changing
the path and trajectory of the manipula-
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tor, rearranging the velocity of the
time-varying obstacle during its move-
ment, or modifying the path and traject-
ory for both the manipulator and the ob-
stacle. ’

2.3 Manipulator Path Constraint

The manipulator path constraint is a
constraint which restricts the maximum
deviation from the pre-determined path.
In order to simplify computation, we
generally assume that s manipulator path
and trajectory is composed of straight
line segments. Thus, the initial locat-
ion { p(keo), 9(ko)]l and the final locat-
ion { p(k¢d, 0(kg)] of & manipulator are
given for each segment, where p{(k) and
¢ (k) specify the Cartesian position and
the Euler angle of the manipulator hand
at time k, respectively. Here, we used
the index k to denote the time t=kT, wh-
ere T is the sampling servo time period.
The manipulator hand is required to move
from the initial location to the final
location in the Cartesian space along
the streight line. The straight line
equation that passes through these two
locations is described by

plk) = Ak} « (plkg) = plke)) + plky) (1)
Q(k) = A(k) » (®(kg) -~ ¢lkp)) + d(kp) (2)

where 0 ¢ 2 (k) s 1, and k¥, and k¢ are
the initial and the final discrete time
indices, respectively.

2.4 Collision Constraint

It is assumed thet the wrist of a
robot is modeled as a sphere. The radius
of the sphere is determined from the wr-
ist geometry and the size of the object
grasped. Then the space x(k) assumed to
be the wrist must satisfy;

I xtx) - ptk) || $x (3)
where r is the radius of a sphere model.
The obstacle considered is also modeled
as a sphere in the same way.

We assume that point pg(k) is the
position of the obstacle at time k, wh-—
ere the subscript o denote the obstacle.
Point p,(k) is the position of the robot
at time k, where the subscript r denote
the robot. We assume that the robot
should follow the straight line path. A
potential collision may occur if the
sphere of the robot wrist intersects the

sphere of the obstacle during its motion.

The distance between two set points on
the robot and the obstacle path must be
greater than r, + r, for collision avoi-
dance, where r, is the radius of the sp-
here model of the obstacle and r, is the
radius of the sphere model of the robot
wrist., The portion that must be avoided
by the robot at time k is the sphere of
radius of r, , centered at the point on
the path of the obstacle at time k {4).

The equation of the straight line
path of the time-varying obstacle is de-
noted as:

Pok) = polky) + A(K)  » (polkel = pglkg)). (4)

where 0 5 A(k) 5 1. Then, the existence
of a potential collision is found by so-
lving the following equation:

to + )% = [lpctr - Po<k)||2 - (5}
Replacing p,(k) by using Eq.(4), we have:

(xo + tp)? = | py (k) =poike) f2-2M(k) » (pr (k) -y
(ko)) * (Polke) -Potko))T + AXKY « [lpg k) -po kot ||2
[

(6}
Eq.(6) has three possible solutions:
(1) Real roots don’t exist; (2) Two real
roots, \§ (k) and )§(k) exist ( rf (k) >,
2§ (k) ); and (3) Only one real double
root xf(k) exists. When no real root
exists, there is no collision between
the obstacle and the: robot at time k
When two resl roots exist, the collision
exists and lengths range from ;.15 (k)
to gf.xf(k), where Lfis the total trav-
eling length of the obstacles. When only
one real double root exists, k marks the
beginning or ending times of the collis-
ion. Thus, the constraint from the coll-
ision situation at time k can be written
as:

3500 s a0 or A5k 2 AL (7)
At time t = (k+1)T, Eq.(7) can be writ-
ten as:

AS (k1) § A(k+1) = A(K) + BA(K). (8-a)
or

A5 (ke1) 2 A(kel) = A(k} + BA(K). (8-b)

Hence the collision constraint on p)(k)
can be expreassed as:

AA(k)ZAg(k+l)* Mk} or AA(k)éAg(k+l)— MkY. {9)

2.5 Smoothness Constraint

We first derive some useful definit-
ions. The position p(k) and the Euler
angle ¢ (k) of a manipulator can be rep-
resented by a 6 x 1 vector and described
by:

{P(k’) = N(g(k))=(N1 {g{k}), ..., Ngla(NT (10)

P (k)

where N( ) is a 6 ¥ 1 nonlinear vector
function depending on the manipuletor
configuration. To initiate the discret-
ized trajectory analysis, let us denote
the sampling period for +the servo con~-
trol of the robot as T (ususlly 3 ms 5 T
$ 20 ms) and g(k) to represent angular
displacement q(kT)

q(kT} = q(k} ; ¥ =0, 1, ... (11)

The velocity, the acceleration, and
the jerk of a manipulator at time kT can
be approximated respectively by:

(k) = —- (G0 -G (k-1)) =4 (k) (12)
G(kT) = —%5(§(k)—2§(k-1)+5(k-2))=§(k) (13)
wikT) = »lg(a(k>~3a(k~1)+3a(x-2)~a1x-3))=&(K>
T
(14)

where w(kT) denotes the jerk at time t=
kT. For simplicity and brevity, we shall
abuse notation and drop the super bar
from the rest of the equations. That is,

QEGH) 1 GIZAR 5 FOOEF) 5 wlK)E# (k)
All discretized control set pointélah
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the joint variable space
certain limits to maintain the smooth-
ness of the trajectory. The smoothness
constraint on the joint trajectory set
points can be stipulated by a velocity
-bound (VB), an acceleration bound (AB),
and a.Jerk bound(JB). These three bounds
are given respectively as [5)

must be within

la; )| sef s eY>6andi=1, ..., 6 (16)
14 00 | s e s ef>6andi=1, ..., 6 17)
lwity | s e] s el>0andi=1, ..., 6 (18)

where eV, :a . el are the ith element of
6- dlmensxonal bound vectors for the man-
ipulator ( suppose the robot manipulator
has 6 joints ). The velocity bound (VB)
and acceleration bound (AB) constrain
the joint actuators from exceeding the
maximum limits of the velocity and acc-
eleration. The jerk bound (JB) reduces
wear of joint actuators, and reduces ex-
citation of vibrations. Hence, we impose
VB, AB, and JB on-the entire trajectory

from one trajectory set point to another.

Combining Eqs. (17) and (18), we have:

i min ) S A0S G4 max (k) 5 i=1,2, ..., 6 (19)

where :

o a . 3

@, min (K)= max(-s ir Gy(k-1)-€i-T (26)
a . j

&i,max (k)= min[ €ir qi(k-1)+ei' T (21)

Similarly, we have the following equat-
ion from Eqs.(16) and (19) for the joint
velocity constraint.

45 ,min (X S9; (K)SG5 nay (k) 5 i=1,2, ..., 6 (22)

where i

4§ min (k)= max [-C}I, T ai,min(k)*’éi(k'l) (23)
v w“ .

45 max (k)= min[ €ir T* Gy (K)+d5 (k-1) (24)

Then, we can obtain the joint position

constraint as:

9, min (OSA3 (K)Sq pay (K) 5 i=1,2, ..., 6 (25)
where
9i,min{k) = T 'qimdn(k) + qj (k-1) (26)

qi,max(k) = T. l'}i'max(k) + q;3(k-1)
As uvsed in Eqs. (1) and (2), we define
p(k) = p(kT) ; §(k) =z ¢(kT) (27)

and drop the super bar from p(k) and

¢ (k) for notational consistency. Let
us assume .that at the time t = (k-1)T,
p(k-1) and ¢ (k-1) are given and that
they are within the physical bounds from
the " straight line requirements , the
smoothness and torque constraints at
t = (k-1)T. Then, we would like to find
the next set point, [p(k), ¢(k)], such
that it is again within the smoothness
and torque constraints and must lie on

the specified straight line path exactly.

From Eq. (10),

ap(k) ) .

[M (k)]= [9N(q(k))] + Aq(k) (28)
where Ap(k) =p(k) - p(k-1), ae (k)= ¢ (k)
-9 (k-1), Aq(k) = q(k) - q(k-1) and the
elements of [ VN(q(k))] are found to be

aNj (q(Xk))

[VN(q(k))]i5 = 3q5 (k)
J

3 1,3 =1,2,...,6
(29)

Combining Eqs. (1), (2) and (28) at time

t = (k-1)T and t = kT, we have:
N plkg)-plkg)
[9N(q(K)) ] « AQ(K) = AMKk) [¢(Kf)-o(ko) (36)
where AX(k) = A (k) - X (k-1).
If [ YN(q(k))] 1is non-singular at time
t = kT, then
Aq(k) = Ax(k)Q(k) (31)
where
- -ifptte)-plto) ]= K)o 0g(K) T
Q(k)=[UN(q(k))] L(tf)'O(to) [0y (k) , 10 (K) ]
(32)
Physically, Q(k) is the vector which

relates the angular displacement of each
Joint with Ax(k) of a given straight
line. Since the servo time interval T is

very small, let us assume that, for the

joinﬁ position at t = kT,

q(k) = gq(K-1) + aq(k) (33)

Then using Eq. (31), we have,

qg(k) =z q(k-1) + Ax(K)Q(k) (34)

Combining Eqs. (25) and (34), we have:

A s k) s mik (35)

where

M= T éijiTunitl ; Axf(k)= éij;TBX(k)
(36)

for i =1, 2, ..., 6.

2.6 Torque Constraint

In general, the dynamic behavior of a
robot can be described by the Lagrange-
Euler equations of motion as
T(kT) =T (k) =[D(q{k)) Ja (k) +h(q (k) ,G (k) ) +c{q(k))

37)
where 7 (k) is a 6x1 applied torque vec-
tor for joint motors, c¢(q(k)) is a 6x1
gravitational force vector, h(q(k),q(k))
is a 6xl1 Coriolis and centrifugal force
vector, and ([D(q(k))] is a 6x6 acce-
leration related matrix. The approximate
equallty results from the .discrete-time
approximation of q, 4 and q Hereafter
we omit the super bar from 7 (k). If q(k)
» 4(k) and §(k) are given, the required
piecewise joint torques can be computed
by treating the equations of motion. as
an inverse dynamics problem. In a simpl-
ified notation,

1(k) = [DK}4G(k) + hx + ck (38)

where Dx = D(q(k)), hx =h(q(k),d(k)) and
ck =c(q(k)), we assume:

4(6) = G ; G(6) =6 ; w(o) = ¢ (39)

at ko =0. Let us further assume that the
torques generated from Eq. (38) are con-
strained by limits that are dependent on
the joint position (due to the manipul-
ator actuator geometry) and on the Jjoint
velocity (due to the back electromotive
force terms or other actuator effects)

-232 -



1987 %K &KX

M Ls #HAkE W XK

8§ 7/ 17

as,

Ti,min (4 (k) ,§K) ) S 15 (k)S 1 el (k) G (K} ) (46)
or in a simplified notation ag,

{'l,min(k) < Ti(k) < Ti,ma!k)‘ (41)

Since the joint torque is represented by
Eq. (38), we have
1iafk) DA £ k) (42)

where Dj,x represents the ith row of the

matrix Dx , and . 1375(k) and 71;}(k) are
written as:

Ti7alK) = Tymk) - hyx - ik (43)
1hat0 = taadk) - bik - cik (a8)
where hy , and c; y are the it? element

of the vectors hxy and cx, respectively.
Combining Eqs. (34) and (42), we have:

Bl mink) S AM(K) S Adjdk) 5 1= 1,...,6 (45)
h
where lei:a(k)mi',a(k—l)~Di'kq(l<-2)
B idk) = (46)
‘ D; k@ (k)
T T“(k)+D (k-1} -Djxq(k~2)
B2 af ) = 143 L (47
© Dy RO(K)

Mimin (k) and  Blimax(k) are the maximum
and minimum constraints for 8A(k) from
the ith joint torque constraint.

3. TIME-VARYING OBSTACLE AVOIDANCE

When there is only a time~invariant
obstacle, the existence of a collision-
free path only depends on the geometry
of the obstacle and the manipulator mov-
ement. However, when a time-varying obs-—
tecle exiat, the existence of collision-
free path depends not only on the geome-
try of the obstacle and the manipulatoer
movement, but also on the various const-
raints and dynemic information of the
time-varying obstacle. Hence, determin-
ing whether @ trajectory satisfies all
the constraints or not becomes the diff-
icult part in finding a collision-free
trajectory. It is notable that the trav-
eling time constraint is mainly from the
job requirement of & manipulator. Thus,
if the manipulator is allowed to travel
the same path for a longer period of
time than the initislly specified trav-
eling time, it may move very slowly on
the path without wviolating both the
smoothness constraint and the torque
constraint. Then, the collision constra-
int is the only one to be satisfied for
the purpose of collision avoidance. In
the limiting case, the manipulator may
delay its movement until the scheduled
path is cleared from any obstacles. This
case corresponds to the situation that
the manipulator stays at the starting
location 1in order to meke the cellision
constraint to be the whole straight line
path. Thus, a simple delay of the manip-
ulator motion could be a solution which
avoids the expense of enormous computat-
ional burden,

4, CONCLUSION

Various constraints necessary for &vo-
iding a collision between a manipulator
and a moving obstacle were investigated
and identified. It was recognized that
the collision avoidance problem associa-
ted with the time-varying obstacle is
not always solvable. A practical sugges-
tion was discussed finally with the in-
herent difficulties in time-varying obs-
tacle avoidance.
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