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Abstract

A method for designing a robust tracking
controller for linear discrete systems is
investigated. Only the observable variables
are to be used in the controller synthesis.

To insure the robustness, the system is
augmented by a compensator at the output side.
Then a feedback controller is designed using
delayed values of the observable variables for
the augmented system. The delay times are
chosen to minimize the effect of measurement
accuracy and/or noise,

1. Introduction

The main objective of the linear control
theory is to design a controller which forces
the system output to follow a given reference
input with zero steady state error while
satisfying certain transient conditions.

There are several schemes available for

solving the problem of tracking and
disturbance rejection. Using the composite
observer of the system and the disturbance,
there is the so-called disturbance
accomodating controller[1]. To assure that

the controlled system is stabilizable and
achieves robust control, Davison introduced
two compensators called servocompensator and
stabilizing compensator{2]. Ferreira and
Desoer follow the design of Davison using the
method of the state space in the frequency
domain(3,4]. But, the above mentioned design
methods do not provide means to prevent the
problems of finite output measurement accuracy
and excessively large control signals which
may cause undesirable output responses due to
saturation effect.

In this paper, the state variable
reconstruction method[5] is used for designing
a robust tracking and disturbance rejecting
controller. The reference input and the
digturbance input are assumed to be modeled by
the state equations. The resulting controller
is synthesized as a feedback of the available
variables only.

2. Problem Statement

Consider a linear time invariant
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discrete-time control system

x(k+l) = A x(k) + B u(k) + E d(k)
y{k) = C x(k) (1)
z(k) = D y(k)

where the state vector x(k), the observable
vector y(k), the output vector z(k), the
control vector u(k) and the disturbance vector
d(k) have dimensions of n, m, q, r and ma
respectively. The constant matrices A, B, C,
D and E have the appropriate dimensions. It
is asgumed throughout this paper that

det(A) £ 0, the system is (A,B) controllable,
(A,DC) observable and the matrix C has a full
rank.

Let zref(k) be the reference input vector
which the output vector z(k) is to follow. It
is assumed that zrer(k) and d(k) are given by
the following state equations,

Xr(k‘f‘l) = Ar Xr(k) (2)
Zref(k) 2z Cr Xr(k)
xa(k+1) = Aa xa(k) (3)

d{k) = Ca xa(k)

where the reference state vector xr(k) and the
disturbance state vector xa(k) have dimensions
of nr and na, (Ar,Cr) and (A4,Ca) are
observable pairs and xr{0) and x4(0) are not
known a priori.

The problem is to synthesize a feedback
controller, using only the observable
variables, such that z(k) of the system (1)
follows zref(k) without error in steady state
for all d(k). The controller should be robust
in the sense that as long as the closed-loop
system remains stable, the output response,
with finiie output measurement accuracy and
the limit on control magnitude, tracks the
reference input with zero steady state error
for any variations in the system parameters.

3. Tracking and Disturbance Rejecting
Controller Using Observable Variables

Let e(k) be the error vector, that is, e(k)
= z(k) - zZres(k). For zres(k) and d(k), let
far and fasa be the minimal polynomials of Ar
and Ad, and let faraa be the least common
multiple of far and faa. Denote



faraa = 2P + fpazP-l 4 ««c + f12 + fo.

Define the augmentation, which has the error
vector as input, by

xc{k+1) = Ac xc(k) + Be e(k) (4)
where
Ra O .. O]
0 Ra. 0
Ac = |, . B
0 0 .. Ra
Rv O OW
0 Re 0
Be = |, .
0 o0 Rb
with
o 1 .. 0 0 o}
Ra = . . . . Ry = .
0o 0 .. 0 0 0
-fo —fl .. "fp-z -fp—-l 1

Then the augmented system (Fig. 1) is
represented by

X(k+1) = A X(k) + B u(k) + B1 zrer(k) + Bz d(k)
¥(k) = C %(k)
z(k) = D (k) (5)
where
x(k) =

x(k)]. ¥ (k) :[y(k), A=z[A o]’
xc(k) xe(k) BDC Ac

B :[(1)3], B: :Lgc , Bz :{lg], [ :[g (1>J D=[D 0]

DISTURBANCE| |REFERENCE
(3) (2)

d(k)
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(4)
Fig. 1. Augmented System

It can be shown as in [3,4] with slight
modification that the system(5) with zrer(k) =
0 and d(k) = O,

x(k+1) = A x(k) + B u(k), (6)
is controllable and, for a stable control law,
asymptotic tracking and disturbance rejection

hold if

rank[zI—A B] = n+q, Vz € 6 (Ac) (7)
DC 0

where 6(Ac) is the spectrum of Ac.
The stabilizing control

u(k) = K x(k) + Ke xc(k) (8)

requires the feedback of the entire state

xc(k)

vector. In most systems of interest, it is
either impossible or impractical to measure
the complete state vector directly.
Therefore, x{k) will be replaced by the
available variables in the feedback
controller. Generally the system can not be
stabilized by a feedback controller using only
the observable state variables. Therefore,
delayed values of the observable variables are
introduced in the feedback.

For the linear system

x(k+1) = A x(k) + B u(k) (9)
y(k) = C x(k)

with the time delays of 0 < hy < h2 < ... €

hi, define
([ C
P =|CA™Mm],
A

vk},

a(k) = | y(k-h1) + & CAFM-B u(k-j)
=

y(k-hi) + J?% CA™I-B u(k-j)

where 1 is such that the rank of P is n. Then
the results in [5] state that

x(k) = (PTP)"tPT q(k).
Thus the control (8) can be expressed as
u(k) = K(PTP)~!PT q(k) + Kc xc(k) (10)

using a known vector q(k) and an externally
defined vector xc{k).

To find the control(10) one must determine
the time delay values hi. The only condition
is that the rank of the matrix P is n. And
such time delays exist whenever the given
system is observable. However, if large time
delays are chosen, then the system responses
are slow. Also for hi, there are hi delayed
control vector terms. On the other hand, in
cagse of small sampling time, the control
magnitude becomes large and feedback control
tends to be sensitive to the measurement
noise. Therefore, time delays should be
chosen such that ly(k) - y(k-hi}l is large
enough compared to the accuracy limit of the
output measurement.

4. Example

For an a.c., motor driven third order
position control system with a sampling period

T = .001

x(k+1) =[1 .1%10-2 .5%10°%)x(k)+[.198%10-7) u(k)
0 1 .1%10~ 595%10-4
0 0 1.0016 .1191

+[.5%10-7] d(k)
.1%10-2

0
v{k)

[1 0 0713 x(k)
z(k) = y(k)

"o

agsume that
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zref(K) = ro + r1 k

d(k) = do.
Then

faraa = (2-1)%,

and the augmentation xc(k+1) = Ac xc(k)+Bc e(k)
is given by

Ac:[o 1), Bc ={0].
-1 2 1

Using an equivalent transformation, two
discrete-time integrators

xa(k) + xs(k)

xa{k+1) =
= X5(k) + Z(k) - Zref(k)

x5{k+1}

are added for the augmentation.
system is given by

The resulting

X(k+1) =[1 .1x10 .5%10-6 0O 0 ) %(k)
0 1 .1¥10-2 0 o0
0 0 1.0016 0 0
0 0 0 11
1 0 0 0 1
+.198%10 7 u(k)+{ O | zrer(k)+{.5%10-7Y d(k)
.595%10~+ 0 .1x10-3
1191 0 0
0 0 0
0 -1 0

To reconstruct the state variables x; and

X3, let hi = 1 and h2 = 2. Then
x(k) = (PTP)'PT g(k)
y(k}
=].15%10%y (k}-.2%10% (k-1)+.5%10%y (k-2)
+ .3%10-%u(k-1) + .1¥10-%u(k-2)
Ax107y (k)~.2%107y (k-1)+.1%107y (k~2)
+ lu(k-1) + .02u(k-2)
For the state feedback control
u(k) = K x(k)
J =% £, [ ®7(k)QR(k) + uT(k)Ru(k) ]
Q = diag [ 1, 0, 0, .0001, 1000 ]
R =1

’
the optimal control is found to be

u(k) = -[.85%105y(k) - .17%x10%y(k~1)
+ .82¥10%y (k~2) +.08u(k-1)
+ .016u(k-2)+.095x¢(k)+17.2x5(k)].

The system response to the unit step
reference input when d{k) = .1 is shown in
Fig. 2. However, with the output measurement
accuracy limit of .0001, the response to the
unit step response is unsatisfactory as shown
in Fig. 3. The output response with the
increased time delays of h: = 5, hs = 10 is
shown in Fig. 4. The system response and
error to the reference input zrer(k) = 1 + k
with the measurement accuracy of .0001, h; =
5, h2 = 10 and d(k) = .1 are shown in Fig. 5
and Fig. 6.

5. Conclusion

The robust tracking problem of linear
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discrete-iime system is investigated. The
method is based on the state variable
reconstruction for the unobservable variables.
The controller i8 robust in the sense that as
long as the closed-loop system remains stable,
the output response, with finite measurement
accuracy and the limit on control magnitude,
tracks the reference input with zero steady
state error for any variations in the system
parameters. When the responses are
unacceptable due to the accuracy limit of the
output measurement, increased time delays
considerably lower the effect of measurement
errors.
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Fig. 5. System response for the reference
input zrer(k)=1+k
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Fig. 6. System response error e(k)zz(k}-zrec(k)
for input zrer(k)=1+k
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