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ABSTRACT

In immobilized cell reactors, effec-
tive cell mass is a very important para-
meter which must be estimated during
operation for control and regeneration
of biocatalyst. In this report, the
effective cell mass in immobilized cell
reactor was studied using a sequential
estimation method. An immobilized yeast
reactor was operated in batch recycle
mode. The states of the immobilized
cell reactor could be estimated from
the process data using an extended
Kalman filter.

INTRODUCTION

The application of immobilized 1li-
ving cells as biocatalysts represents
a new and rapidly growing trend in
biotechnology. Considerable research
on immobilized cell system has been
conducted over the past several years
(1,2,3). One of the important
application of immobilized cell culture
is the production of alcohol from
renewable resources (4,5). For the
application of immobilized cell system,
the system should be understood.
Especially identification of states of
the cells and stability of biocatalysts
during operation is an important
factor. For an immobilized cell
reactor, effective cell mass should be
estimated for the optimal control of
the bioreactor, especially the flow
rate control and regeneration of the cell.

1t is very difficult to estimate
the effective cell mass accurately,

for porous catalyst systems,
because tco many factors
influence the result (6). Internal and
external mass transfer can not be
accurately considered, because
diffusivities of substrate are

different and difficult to measure, and
the partition coefficient should be
incorporated. In the case of an
immobilized enzyme, the amount of
initial charge is known and the enzyme
remains unchanged except being
deactivated by shear or heat. But the
system becomes more complicated in the
case of immobilized cells; initial cell
mass is very difficult to measure, a
dense cell layer exists in the support
matrix, and the dead cells cannot be

distinguished from the 1live cells.
Also the cells change with the
nutritional and environmental
conditions (7). Even though the total
mass in biocatalysts can be measured,
it has no meaning because the reaction
is determined by the effective cell
mass only. Product or substrate
concentrations can be obtained by
on-line or off-line measurements but
effective cell mass cannot be
measured, instead this should be
estimated from possible mesurements.
By employing on-line and/or off-line
measurements, sequential estimation of
the effective cell mass is possible.
The optimal control and regeneration
of an immobilized cell system require
the wupdated estimates of the system
state variables and parameters based on
the limited number of measurements
containing errors. Random errors and
noises are always present in the
process and the measurements. To meet
the demands of an effective state
estimation from discrete or continuous
measurements, sequential estimation
algorithms have been developed (8).
This sequential estimation theory has
been applied to chemical and
biochemical engineering processes.
Gavalas et al (9,10) applied the Cox
filter and extended Kalman filter to a
plug flow reactor with first order
irreversible reaction and catalyst
decay and got good results. Wells (11)
showed an application of extended
Kalman estimator to a well-stirred reac
-tor. Kiparissides et al (12) included
this method for an optimal stochastic
control of a continuous latex reactor.
Recently this method was applied to a

biochemical engineering processes.
Jefferis et al (13) wused a digital
filtering technique for the
fermentation process analysis. They
estimated the cell density and the
growth rate from the periodic

measurements of turbidity. Suvcek et
al (14) applied the extended Kalman
filter to a continuous culture. The
state variables and the constants in
the Monod equation were estimated by
this method. Stephanopoulos and San
(15,16) applied this filter method to a

* fermentor for the on-line bioreactor



identification using elemental balance
equations. Yoo et al (17,18) applied
the sequential parameter estimation
method to the optimal control of fed
batch culture.

In this paper, a sequential estima-
tion of effective cell mass and state
variables were used to identify the
immobilized cell reactor system.

SEQUENTIAL ESTIMATION METHOD

The extended Kalman filter techni-
que is well established as a powerful
sequential estimator and has been
applied to many areas. The extended
Kalman filter determines the estimates
of the states which minimize the least
sguares of an objective function
(8). The system equations are expressed
by the difference equations

x = £ (x ,u )+ w (1
k+1 k k k

where, £, 1is a vector function of the
state x,and the control u,, and x, is a
state vector of the system. wi is a
zero mean, white Gaussian noise process
that may represent either actual input

disturbance or inaccuracies in the
systen model. The observation
equations are represented by the
relation

z =h (x ) + v (2)

k k

where z, is an observation vector, h
is also a vector function of the state
variables and v, is a zero-mean, white

Gaussian noise process assumed to be
independent of w; . The respective
covariances of wy and v, are Q and Ry .
The estimate of x through time k is
denoted by x./ . Py /k denotes the
covariance o% the error in this
estimate, Then the extended Kalman

filter is represented by the following
equations;

)

prediction
x -f (x Fu ) (3)
k/k-1 k-1 k-1/k-1 k-1
correction
2z = h (x ) (4)
k/k-1 k k/k-1
#T
P = P + Q (5
k/k-1 ﬁ;-l k-1/k-1 k-1 k-1
x - X +w (z2 - z } (6)
k/k k/k-1 k k k/k-1
P = (I -wH )P (7)
k/k k k k/k-1
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where

daf
k-1
£ = : (8)
k-1 dx X
k-1 k-1/k-1
dh
k
H = ) (9)
k dax x
k k/k-1
T T -1
w =P H (H P H +R )
k k/k-1 k k k/k-1 k k
From these equation (3-10), states of
the variables can be predicted and
corrected.
EXPERIMENTS

5g of sodium alginate was dissolved
in a 250 ml water and 5 g of 1lyophili-
zed Baker'’s yeast was rehydrated in 100
ml of water. The above solution were
mixed well and the mixture was pumped

into 500 ml of 0.05 M CaCl; solution
through a No. 20 syringe at a
temperature below 5 °C. The droplets
were suspended for 2 hours to allow
gelation. Beads of 2.0 mm diameter
were obtained. The beads containing

yeast were filled into a glass column (

25 mm ¢ x 200 mm H) and the complete
nutrient medium was passed through the
column for 48 hours to activate the
cells and to increase the number of

cells inside the beads.

The composition of the nutrient me-
dium was; glucose 100g, (NH,;),S80,21.4g,
MgSO,7TH,0 0.29 g, yeast extract 1.14 g,

KH,PO, 39, K,HPO,1 g, CaCl,2.75 g in
1000 ml of nutrient solution. All the
experiments were done in an aseptic

condition and the chemicals used were
reagent grade. The temperature of the
reactor was maintained at 30 °C. A

batch recycle reactor was used to study
the immobilized cell reaction scheme.

The experimental set up is shown in
Figure 1. The medium was changed after
activation to a production medium which
contained a known amount of glucose and
0.114 %(w/v) of yeast extract. Yeast
extract was added to medium to maintain

the cell viability during alcohol
production. Samples were taken from
the reservoir and the concentration of

glucose and ethanal were measured.
Glucose was analyzed enzymatically
by a glucose analyzer,ethanol was ana-
lyzed by gas chromatography. To measure
the cell mass in the beads, 20 beads
were taken intermittently during the
experiment and dissolved in 0.1 M
sodium citrate solution. After being
dissolved, centrifuged, washed, it was
dried in the oven over night at 90 °*C.
Total cell mass in the column was



obtained by multiplying the number of

beads by the cell mass in the bead.
Table 1. shows the experimental

conditions the immobilized yeast

reactor.

of

o By S————

Figure 1. Experimental system of batch
recycle reactor.
1. immobilized
2. reservoir

reactor

3. condenser 4. pump
5. flow meter 6. constant temperature
water bath 7. low temperature water
bath 8. magnetic stirrer 9. sampling
line

yeast

Table 1. Experimental condition of immo-
bilized yeast reactor

condition Exp. No.l1 Exp. No.2
initial substrate
concen. Si (g/1) 100 130
gel volume (ml) 70 65
reservoir volume
(ml) 1500 1000
flow rate (ml/hr) 1100 1100
total cell mass (9g) 4.86 4.33
cell mass in gel
(g/1 of gel) 69.4 66.6
cell mass in reactor
(g/1) 109.0 71.0

* cell mass in reactor volume was
calculated to employ the kinetic
expression as in equation (11).

cell mass in reactor

reservoir + gel volume

= total cell mass x
gel volume

SIMULATION
1t was reported that high concen-
trations of substrate and product
inhibit the production of alcohol (19).
The following equation was wused by
Aiba et al (20) for the alcohol
production kinetics of the yeast.
S K
r =V X (11)
m K+ S K + P
s p
P - P =Y ts - 8) (12)
i P/s i
where r is the reaction rate, P and P,
is the product concentration and
initial product concentration

respectively, S and S; is the substrate
concentration and initial substrate con
-centration, x is the cell mass, Yp/sis

the product yield from substrate and Vv

, Kg and K, are constants. For the
differential reactor studied here, the
material balance equation was derived

{21) and can be expressed as follow ;
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vV + V
R T dp
r = _ (13)
\4 dt
R
where VR and Vr are the reactor volume

and the reservoir volume respectively.
By combining equation (11) and equation
(13).

dp R S P

dat vV +V m K + 8 K + P

X 1is considered as a state variable
and its derivative is set equal to zero.

dx

—— = 0 (15)

dt
Equation (14) and (15) were used
for the simulation. The value of
constants Vy, Ks and Kp are the same as
in a Aiba et al’s work (20,22,23).
These physiological constants in an
immobilized cell are assumed to be the
same as in a free cell. The
first simulation was tried for the
constant cell mass system. Data from
the experiments were used to simulate

the immobilized yeast reactor. Product
concentrations were obtained by solving
the above equations and 5% of noise was
included in the measurements of P using

a random number generator. After a
long period of operation, the cells
slowely decay due to a shortage of

nutrients (23). So the next simulation
was performed for the decaying cell
mass system. The deactivation of the

cell was simulated using the equation

x = x exp (

-k (t -
i a

t)) , >t
4a = d

in the initial effective
cell mass and ky is the deactivation
constants, and ty is the time after
which decay occurs. For the decaying
cell mass system, the true value of X
was calculated from eguation (16) and
the effective cell mass was estimated
by solving the extended Kalman filter
equations (14) and (15). Vo= 2000 ml,
Vg= 50 ml, kg= 0.0078 and tgy= 50 hours

Where X;

were used for this simulation. To ob-
tain a discrete version of equation
(14) and (15), the Euler method was
used. Equation (14) and (15) were
integrated with small intervals (AT =
0.02 hour) and the extended Kalman
filter was operated every 0.5 hour.

For this study, following values of P
. Q and Rywere used.

P =

0.0025 0 )
0/-1 0

0.25

(16)



0.0001 0
Q =
0 0.0025
R = 0.0025
k

RESULTS AND DISCUSSION

The cell concentrations in the gel

was, after being activated, 67 - 70
mg/ml of gel and this result is
almost same as reported by Ryu et al
(22). Figure 2(a) shows the
experimental measurements of the total
cell mass during operation for the
first experiment. The yield, Yp/s9 in
equation (12) was 0.50 from the
experiment. The cell mass was
calculated from equation (14) to fit
the experimental measurements. Using
the parameter values of the free cell
system, model equation fitted the

measurements curve well. Therefore the
same model and parameter values were
used for further study. The effective
cell mass calculated was 21
g/l in this case. By comparing with
the measured cell mass 109 g/l1, the
efficiency of the immobilized cell
system(effective cell mass/total cell
mass) was found to be 19 %.

The true value of effective
cell mass calculated above was
used for simulations. Figure 2(b)
shows the corrected values of product
concentration measurement. The correc-

ted values of the product concentration
followed the true value well as shown
in Figure 2(b). The estimated
effective cell mass converged to the
true value (22 g/1) from initial guess
(30 g/1) as shown in Figure 2(c). By
increasing the number of measurements,
the estimated value converged rapidly
to a true value.

Similar results were obtained for
the second experiment as shown in
Figure 3(a). Measured cell mass was 71
g/l and the effective cell mass was
estimated to be 16.5 g/1. Therefore
the efficiency was 23 % in this case.
Also almost same results were obtained
from the simulations as shown in Figure
3(b) and (c).

For the decaying system, the
sequential estimation method was again
used tc estimate the effective cell
mass as shown in Figure 4(a) and 4(b),

and this method gave good results.

It seems that the equation(ll) can
be used directly to estimate the effec-
tive cell mass by knowing §,P and the
reaction rate. When many data are
taken in a short time, the reaction
rate is sometimes positive or negative
due to the measurement errors, which
makes the estimated value of X
meaningless. When a small number of
data are taken, the reaction rate
expressed as dS/dt (or dpr/dt) becomes
inaccurate. But this sequential method
eliminates the above problens. For a
packed bed reactor which is commonly
used an extended Kalman filter equa-
tions are to be modified, which is left
for further study.
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CONCLUSIONS

Immobilized yeast cells were packed
in a column and operated in batch recy-
cle mode to study the immobilized cell
system. Effective cell mass Wwas
calculated to be 19 to 23 % of the cell
mass in the immobilized cell system for

alcohol production. Simulation
results show that the effective cell
mass could be estimated sequentially

from the measurement of product concen-

tration for the system with or without
cell decaying. By increasing tpe
number of measurements, a rapid
convergence was observed.
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Figure 2, Experimental and simulation
results of Exp. No.l
(a) experimental measurements with simu-
lation results
; experimental measurement of S(g/1)
; experimental measurement of p(g/l)
result from curve fitting
(b) estimation of state P
true values
simulated measurement
corrected value
(c) measurements of cell mass and
estimation of the effective cell mass
(Xerue™ 21 9/1, %, oo™ 30 g/1)
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Figure 3. Experimental and simulation
results of Exp. No.2
(a) experimental measurement with simu-
lation results

a4 ; experimental measurement of S(g/1)
o ; experimental measurement of P(g/1)
——; result from curve fitting

(b) estimation of state P
---; true value
A ; simulation measurement
——; corrected value
{(c) measurements of cell mass and esti-
mation of the effective cell mass
(Xtrue=16.5 g/1, xguess= 25 g/1)
a ; cell mass measurement
——; true effective cell mass
---; corrected effective cell mass
(AT=0.50 hour)
——; corrected effcctive cell mass
(AT=0.25 hour)
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Figure 4. Simulation results of
decaying system
(a) estimation of state P
---; true values
A ; simulated measurement
-——; corrected value
(b) estimation of effective cell mass
(x, we™ 16.5 g/1 T = 0.50 hour)
——; frfie effective cell mass
corrected effective cell mass
(xguess’ 21 g/1)
; cdrrected effective cell mass
(Xguess= 10 g/1)
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