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ABSTRACT

Stability of Co Semigroups perturbed via the steady state
Riccati equation (SSRE) is studied. We consider an infinite di-
mensional system : X = Ax + Bu, in(A), domain of A,
where A is the infinitesimal generator of a Co semigroup
[T(t), t20]in H.

If the original Co semigroup [T(¢), t> 0] has a lower
bound : T (r)x]l 2 kx|, for all x in H, ¢> 0 and k> 0, then
the perturbed Co semigroup via the SSRE, where the feedback
operator B is compact, cannot be exponentially stable. Physical
interpretation of this result is as follows : in real applications, a
finite number of actuators are available, therefore the operator
B is compact,

When the original system is inherently unstable, that is,
has an infinite number of unstable modes, the perturbed system
via the SSRE cannot be stable with a uniform decay rate.

1. Introduction

In this paper we will deal with stability of stronly con-
tinuous (i.e., Co) semigroups of bounded linear operators on
Hilbert space H. The inner product and norm are denoted by
-, -Yand by} - ||, respectively.

Now consider the linear system (A, B) such that

X=Ax+Bu,

where A is the infinitesimal generator of a Co semigroup
[T(t), t= 0], and B is a bounded linear operator from another
Hilbert space U to H.

The system (A, B) is called to be "stable” is for each x in
H : T(t)x—0, t—eo in a certain sense which will be discussed
later. Now if the system (A, B) is not stable and if there exists
a bounded linear state feedback operator F : ¥ —U ,u=Fx, such
that A+ BF generates a stable semigroup [S(¢),12 0], then the
system (A, B) is said to be state feedback stabilizable.

We study, in this paper, stability of a linear distributed
parameter system by means of a state feedback involving a
solution of the steady state Riccati equation (SSRE) which
results from the linear quadratic regulator problem, or from the
Kalman filtering problem. Specifically we investigate stability of
a semigroup [S(¢),¢> 0] whose generator is A—BB'P, where P
is bounded linear, self-adjoint and nonnegative, P> 0. P
satisfies the SSRE:

[Px ,Ax)+[Ax ,Px]+[Rx,x]-[PBB " Px,x]=0
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for x in the domain @(A) of A. Here R is also a linear
bounded, self-adjoint and nonnegative, R > 0, operator.

It is natural to extend the well-known results of the
finite dimensional control system theory to the infinite dimen-
sions. Most of the works to date emphasize exact controllability
and exponential stabilizability [4], [12], which, of course, are
generalization of the finite dimensional results of Lyapunov (7],
Kalman [8] and Wonham [11].

In finite dimensions, it is well-known that controllability
implies stabilizatility. In infinite dimensional systems, these
results of finite dimensional systems can not be easily extended.
We cannot have exact controllability when the semigroup
[T (1), t= 0] or the operator B is compact [10]. Also we cannot
have exponential stability by compact feedback in the case of a
linear oscillatory system [6].

These difficulties motivated us to study the limitations of
exponential stabilizability of infinite dimensional systems. In
practice, we use a finite number of control elements to stabilize
the unstable systems according to the control law based on the
observed state from a finite number of sensors in the systems.
This implies that the operator B is compact. The original Co
semigroup which we deal with in this paper is a semigroup
[T(t), t=2 0} with a undamping oscillatory part, that is, the
norm 1T (e)xi| has a lower bound such that
T (e)x}z kllxl, k> Oforall x in H, = 0.

In Section 2 we will introduce basic notions of infinite
dimensional systems. We deal with generation of the perturbed
semigroup [S(¢), t2 0] via the SSRE, and stability of
{$(1), t= 0] is considered in the case that the original semi-
group [T (¢), ¢2 0} has a lower bound in Section 3. Also an
interesting example, which shows that exponential stabilizability
can be achieved when the unstable states are finite, is dis-
cussed. In the last Section the limitations of exponential stabil-
izability and physical interpretation of the results of this paper
is considered.

2. Preliminary Results of Infinite Dimensional Systems

We begin with various notions of positivity of linear
operators.

Definition2.1 A linear bounded self-adjoint opeator L on a
complex Hilbert space is said to be

i) nonnegative, written by L= 0,
[Lx,x]2 0, for each x in /1,

ii) positive, written by L > 0, if and only if {Lx,x]> 0, for
each x in H,

if and only if



iii) strictly positive, written by L> o/,0> 0 such that
[Lx,x)2 allx]? for each x in H

. ) The notion of controllability can be extended to the
infinite dimensions as follows [12] :

Theorem2.1 The following two statements are equivient.

i) The system (A, B) is exactly controllable.

ii) 'There exists (>0 and o>0 such that

jollB‘T‘(c)xuzdcz oflx 2, for x in H.

In“many applications, the operator B is compact. Hence
t[h; part ii) of the above theorem does not hold. Now we have
1], [10]:

Theorem2.2 If the semigroup [T (¢),2 O} or the operator B

is compact, the system (A, B) cannot be exactly controll-
able on H.

The next best property to exact controllability is when
the controllable subspace is dense in H.

Theorem?2.3 A necessary and sufficient condition for the sys-
tem (A, B) to be approximately controllable is

1
jo 1B°T* (6)x )} do=0 implies that x= 0, for any t> 0.

Since observability is the dual of controllability, if fol-
lows that

Definition2.2 The pair (C, A) is said to be

i) exactly observable if and only if, for some
t
> 0,0> O,I ICT (s)xIPd o2 alix %, for x in H,
0
ii) approximately observable if and only if, for >0,

CT(t)x = 0 implies that x = 0.

As in the finite dimensional case, it follows that (A, B)
exact (approximate) controllability <> (B ', A%) exact
(approximate) observability.

Now the notion of stability of finite dimensional case can
be generalized to infinite dimensional systems :

Definition2.3 A Co semigroup [T(¢), r2 0] is said to be

exponentially stable if there exist constants M2z 10> 0
such that

IT () Me™™, 120

Definition 2.4 A Co semigroup [T (¢), 2 0] is said to be
strongly stable if for each x in

lim |7 (¢)x | =0.

Definition 2.5 A Co semigroup [T(¢),t2 0] is said to be
weakly stable, if for x, y in I

lim (T (1)x,y1=0.

We here consider examples of strongly and weakly stable
semigroups [2].

Let [T (1), r= 0] be the left shift operator such that, for
x in H=L,[0,).

if E+¢2 0
otherwise

&+,
T(1)x(E) = {x o
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where inner product is defined by

[x, yl= J‘x-:v'dﬁ; for x,y in L;[0, ).
0

Then NT(O)x|?= [ Ie(1+&)PaE = J () idn—0 as 1—o.
0 t

However T ()l = 1.
On the other hand for the right shift operator such that,
for x in H=L [0, o).

if &-t20
otherwise

x(&-1),
T(6)x(&) = { 0,

We then have [T (1)x > = [x 2 but Ilim [T()x,yl=0forx y
o
in H.

Several results are shown for the semigroups which have
special properties [S].

Theorem?2.4 If a Co semigroup [T (¢), ¢2 0] is compact for
some tg> 0, then [T(s), (2 0] is exponentially stable if
and only if it is weakly stable.

The standard results of finite dimensional systems can be
generalized as follows [4], [12].

Theorme2.5 Suppose the system (A, B) is exactly controll-
able, then it is exponentially stabilizable.

Theorem?2.6 A necessary and sufficient condition for the
semigroup [T (¢), ¢> 0] to be exponentially stable on H is
that there exists a bounded linear, self-adjoint and nonne-
gative operator P on I such that

2Re[PAx, x] = —Ix|? for each x in H(A).

Also an interesting results can be derived from the above
theorem [4].

Theorem 2.7 A Co semigroup [T (¢), ¢2 0] is exponentially
stable if and only if

J' IT ()x |Pdi< oo, for each x in H.
[\
Now consider a system (A, B) with a cost functional:
J(x, u) = [ AR= (1), x()+[u(0), w(e)]3ar,
]

where R is a bounded linear self-adjoint and nonnegative opera-
tor on H.

As in the finite dimensional case, the optimal feedback
solution u(t) = —B"Px (1), t= 0, can be obtained from the
"inner product” steady state Riccati equation (SSRE):

[Px, Ax]+[Ax, Px1+[Rx, x]-[PBB"Px, x1= 0

for x in.£(A), where the solution P, which is assumed to exist
throughout this paper, is nonnegative, self-adjoint operator on
H.

Wonham’s results [11] in finite dimensoinal systems can
be generalized as follows {12].



Theorme2.8 If (A, B) and (A",R) are exponentially stabiliz-
able, then there exists a bounded linear, self-adjoint and
nonnegative solution P of the SSRE, and the semigroup
[S(¢), t= 0] with generator A-BB'P is exponentially
stable

3. Stability of Co Semigroups Perturbed via the SSRE

We now show generation of the semigroup [S(¢), 12 0]

with the generator A—BB*P from the SSRE.
Consider the SSRE: for x in £(A)

[Px, Ax]+[Ax, Px}+[Rx, x]-(PBB"Px, x]= 0 (3.1)

Substracting 2[PBB"Px, x] on both sides of (3.1), we obtain,
for x in @(A),

2Re[P(A-BB'P)x, x]= ~[Rx, x]-|B"Px|’)s 0 (3.2)

Since S(¢)x is in H(A), it follows that, for x in H(A),
%[PS(:)::, S(t)x] = -[RS(H)x, S(H)x]-IB PS(H)x|? (3.3)

Since ) (A ) is dense in H, integrating both sides of (3.3) we
have, for x in H.

[PS (£)x, S(¢)x]-[Px, x]

= -—I [RS(o)x, S(o)x]-B"PS(c)x|*da, 12 0 (3.4)
0

Theorem 2.7 are now applied to the semigroup generated
from the SSRE. We have

Theorem3.1 Let P2 0 be a solution of the SSRE where R is
taken to be strictly positive, then the semigroup

[S(t), t= 0] with generastor A-BB°P is exponentially
stable.

Proof We have from the SSRE, for x in 8(A)

2Re[P(A-BB'P)x, x]= —[Rx, x1-1B" Px|?

The existence of a solution P of the SSRE implies that, for x in
H,

JIRS(1)x, s()x)dt € [Px, x] < oo,
[

and since R is strictly positive, we conclude that

[ IS (DxIPdt < oo, for x in H
[

Therefore [S(z), ¢= 0] is exponentially stable by Theorem 2.7.
Now we consider the case that the original semigroup

[T(t), = 0} has a lower bound such that
IT(H)x|z klxfl, £> 0, for x in H

First we have [9].
Lemma3.1 Let {¢,} n=1,2,--- be an orthonormal

sequence in the Hibert space #/, then the linear operator K
mapping H to itself defined by

Kx = 3 0,0,(0,, x1}, for x in H.
a=1

731

is compact if and only if

lim o] = 0
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Therefore if the operator B is compact, then B is nonne-
gative B2 0, and inf |Bx|l=0

Now we show the follwoing theorem.

Theorme3.2 For a system (A, B) if the semigroup
[T(t), t= 0] with generator A has a lower bound such that

IT()x ||z klix), >0, for t20, x in H,

then the system cannot be exponentially stabilized by a
comapct feedback F=—B"P, where P is a bounded linear,
self-adjoint and nonnegative solution of the SSRE.

Proof.

Since we have, for x in /1 [1],

¢

S(O=T(O)x-{ T(1-0)BB PS(c)do,
[

(3.5)

We can obtain by the triangular inequality and Schwartz ine-
quality

IS (1)x 2 IIT(I)XII—f IT (1-0)IBB"PS (c)xlds, 120  (3.6)
[

Let for an arbitary X in H

i
JIT(t=0)11BB" PS (0)Tlda, 120
0

=inf[ JT (+- o)) IBB*PS(0)x|do, (3.7)
*
then
Sz 2 IIT(t)fII—f IT (¢~ ) 1BB.PS (cTx IdC
0
sup IS (x| 2 1S ()X 2 \T ()X}
—infj IT (= c)IHIBB™PS (G)x|do
* %
2 inf IT (1)x )
—inf[ IT (1~ c)IBB " PS (G)xldo (3.9)
%

By compactness of B*P, BB P is also compact, hence
inf \BB*PS(s)x] =0, 620
It thus follows from (3.9) that

HS(t)ll=supﬂ§—l(éTl—"—ﬂz k>0, for t20

Therefore [S(r), 12 0] cannot be exponentially stable

Remark 1 The above theorem is more generalization of the
Gibson’s result [6] where |7 (£)x |l = |x|.



Remark2 If the original semigroup [T (¢), t= 0] has a lower
bound: AT (¢)x ]2 k Jx), 12 0, for x in H, then the system
(A, B) has an infinite number of unstable states.

Next we consider an example which shows many
interesting properties we have discussed before.

Example2.1 [Heat equation : bounded domain].
Consider the system :
Ix 9%
=== < > 0.
E» aéz+Bu(t, g), 0 &<2m, 120

Let H=L,{0, 2r], and the boundary conditions are

x(0) = x(2x), x’(0) = x"(2n).

2

= aa_gz’ md H(A)=x in Hix, 1
continuous x’, x” in H ;
We observe that for x in

We have A absolutely

and x(0)=x(2r), x"(0)=x"(2n)
H(A),

x
1 nepN TTEY
[Ax, x]= E‘[ox (£)x(8)d§

1
= — 4 2
=5 jo &' (§) Pat

=[x, Axls 0O

Hence A is self-adjoint and dissipative, and it generates a con-
traction semigroup [T(r), t2 0] :

> e‘“2'¢,[¢,,x], t20 and for x in H.

n=—oe

T(t)x =

where ¢,.=e™%, n=0,+1,%£2, -, is
sequence in /.
Now it is easy to see that

an  orthogonal

1T () 0ol=100l :
IT()o,4< I9,) for n 0, A=t 1,£2, -,

o is unstable

Let
Bx = Y 2—,-¢,,[q>,,_,\:]
Px =
and Rx= d(” Pt (n—z+l—)—;)¢,[¢,,, x] for x in H, then

P satnsﬁes the SSRE.

Since lim |—
nk e nc41

‘= 0, B and P are compact. Now

[Rx, x)= z (2-——

1 2
+1+ pllUREL

> 2‘, Hé o x1%=1x|?, for x in H.

R is strictly positive, that is, R is not compact,
Now consider, for some £> 0
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j [RT()x, T()x]dt

——)e "0, (00, 2],

I[Z(z z

. a1 (n 2+1)

i e "0, 10, x]1dE

= _..L._ -2k 2
- u=Z_..‘fo - 2+1 (n1+1)4)e {9, x]1
JEX
= 2, S (g2 1-e?
_EI[%’X]H,.:Z-.,(Z n2+1+(n +1)‘) n?

Therefore (A”,R ) is approximately controllable.
Since [T (t)x, t2 0] is represented as, for x in H

S e 0,00, x], 120

A=—os

T(t)x =

and llm e " '—0 [T(t),t= 0] is compact. Next the resolvent

R (A A) becomes

R(AA)= ¥ je"’ e, [ ,x1dt, A> 0

Az

-3

_2.1'—I¢n[¢nrx]~

We have lim 21 \: 0, hence R (A,A) is also compact.
not o A

We now study stability of [S(¢), 12 0]. Since

-n%

o 4 ———2]—;11
S(hx= Y e (507 (0, 2],

IS ()x )< e x )

[S(¢), t2 0] is exponentially stable. Here we interprete stability
of {S(¢), t= 0] by using the former results.

Remark 3 Since R is strictly positive, and the solution P of
the SSRE exists, [S(¢), = 0] is exponentially stable by
Theorem 3.1.

Remark 4 The unstable supspace, span {¢,} is controllable
and observable, eventhough (A, B) is not exactly controll-
able and (R, A) is not exactly observable. Therefore
[S(t), t2 0] is exponentially stable.

Remark 5 The existance of P and (A, B) approximately con-
trollability imply that {S(¢), T2 0] is weakly stable. On the
other hand, since ([7T(¢),120] is compact, so is
[S(t), > 0], hence by Theorem 2.4, [S(t), 20} is
exponentially stable.

Remark 6 Even though R is strictly positive, (A°,R) is not
exactly controllable. This is an example where theorem 2.2
applies to this case where [T (1), 2 0] is compact.

The above example explains many theorems discussed
earlier. If we have a finite number of unstable states, we can
stabilize the system (4, B) by compact feedback. However we
cannot have exponential stability in the case where the original

semigroup has an infinite number of unstable states as in
Theorem 3.2.

[a, x11



4. Conclusions

We have studied stability of Co semigroup perturbed via
the SSRE. In many practical applications, we use a finite
number of sensors and actuators. Therefore the operator B and
R is compact. If the original semigroup has an infinite number
of unstable states, then we cannot have exponential stability. If
the system has only a finite number of unstable states, then we
can have exponential stability even though B is compact as in
the example.

Most of the practical systems have inherent damping
modes. These modes are stabilized with uniform decay rates.
However very minute vibration or oscillation in the infinite
dimensional systems which are to be persistent forever, cannot
be stabilized with an exponential decay rate.

The next thing to exponential stability is strong stability
and weak stability. These stabilization concepts must be con-
sidered to analyze these systems which are not exponentially
stabilizable, for example, the system described by the wave
equation.
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