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1. Introduction

It is well known that the parameter
estimation accuracy is dependent upon
the choice of input signal.

The problem of designing optimal input
for parameter estimation in dynamic
systems has been extensively studied for
certain classes of models.

Optimal input means that maximum
information about the system can be
extracted from the measured input-ocutput
data.

For the special case of the moving

average model with input power
constraint, Levin {1}l has derived the
optimal input condition which is

independent of system parameters but an
optimal input conditions will, in
general, depenad on

the system

parameters which are unknown.

To overcome this aifficulty we have
to do a preliminary experiment to get
nominal values of the parameters. They
will Dbe considered as true values for
computing the optimal input. Using
this optimal input, a new improved model

can Dbe estimated.
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Much of the early work was surveyed
and contained in £3,4).

As the counterpart of Levin’'s result,
a closed-loop

input signal is derived

analytically by use of a minimum

variance feedback control law together
with a white pertubation signal for an
autoregressive model with an output
power constraint €Sl

Using a Chebyshev system approach
Zarrop [7] showed that under a certain
condition,

D-optimal design could be

achieved with finite number of

sinusoidal input frequencies without

feedback. This is clearly the strongest

result we can hope to obtain in this

approach.

Stoica and Soderstrédm [8,91 proposed

an useful input parameterization for the

SISO transter function model with

rarametrically disjoint system and noise
transter functions.

Ng, Goodwin and Sdderstrém [10] has
shown that the minimum variance control
strategy gives a D-optimality for a
general 1linear system with output
variance constraint by reparameterizing
independently the

system and noise



transter function.

In this paper the 1i1nput design

problem is considered for the linear
system model in which the system and
noise transfer function have common

parameters. Explolting the information

matrix structure, it is shown that D-

optimal open-loop input signal can be
realized as an autoregressive moving

average Pprocess.

2. The input design prodblem

Consider the linear time-invariant

discrete-time system model described by

Az Dyyp=B(z"Hug+C(z ey (1)
or
B(z™1) cz™h ,
Yg = ——/ug + ———ey (1
Arz™h a(z"1y
Where {yyg?} is a sequence of
observations, fuy} is a sequence of
inputs and tegx}? is a white Gausslan
noise seqguence with variance o°
and z7! is the unit backward shift
operator.

Note that the system transfer
function B(z !)-A(z"l) and the noise
transfer function c(z 1y acz"1y are
.interrelated,since they have common
denomenator polynomial A(z"1).

The polynomial A(z 1), B(z"1l) ana
c(z"1) are defined as follows.

a(z™ly = 1eagzle rapz™h

B(z"1) = pyz7il.. ..., +Dpz ™0 (2

ctz™ly = 1vcqzTie Ll +opz T

It 18 asummed that the polynomial

AB and C are relatively prime and the

polynomial A and C has all its =zeros
ocutside the unit circle.
The input signal g is
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uncorrelated with feg: for any Kk

and s ( open-loop signal ).

2 is the vector of unknown
parameters to Dbe estimated more
accurately.

8 =

faj...ap Py...oy Cl...Cr]T

A deneral measure of the estimation

accuracy 1s given Dy the covariance

matrix of the parameter estimates. If

the estimator is asymptotically

efficient (e.g. maximum likelihlicod) the
asymptotic covariance matrix is equal to
the inverse of Fisher information matrix
M defined by

M EyeCaLl 0T 2L 750) (3

Where L is the log-likelihood

function log p(YlG) and (gl. 3 83 denotes

a row vector with i-th component of
3L “298; ., 8 being the i-th component
of 8.

In general, it is not possible to

optimize the whole matrix. We then have

to select a suitable scalar function of

M to be optimized. Any optimal input

design must also take account of the

constraints on input signals. Otherwise

the optimal input will clearly be an

infin:te power signal.

Now we can state the optimal input

design as the problem of finding an

input sequence fug} that optimizes the

suitable scalar accuracy function

subject to the given constraints.

3. Information matrix structure ana

the input parameterization

A measure of efficiency in an

identification experiment can be



exXpressed as a scalar function of the where, for convenience here and

information matrix which is defined Dby subsequently, we omit the argument and

eq.(3). An expression for this matrix 1et Aza(z~1), B=Bcz 1y ana c=c(z"1).

is developed in detail. Note that fawyg “2Cj} 4o mnot depend
For Gaussian data, the 1likelihood on the input sequence iuk}

function can be written as
N Substituting eq.(10)(11)(12) 1into
P(Y|8; 1) z(2wol)expi~-(17208) = w 2} (4)
k=t K eq.(9) gives the following expression

wWhere Y = [¥yy ...¥YN 1T
for M,
U=z [u ...uy 17T
fwpgl is the residual segquence Maa @ Mas
R o= | === S (13)
given by MaeT * Meyp

wr=ia(z ez tyg-iB(z racz"HuKii(s)
Where the partition cf o]
The 1log 1likelihood function L is
corresponds to the partition of @

given by
N between a anda b, i.e.,
Lz -(N/2) log2w-(N-2) 1ogoS-(1-202) = wgl (6
K=t 8t = ot o7
An expression for (3L 38) can be of = ra; .... anp by .... byl (14)
easily obtained from eq.(6) . T = fcy ....cp?
N
2L 728 = -(1-02) (E‘Wk( 3wy 28) (7 As an optimal criterten J, we shall
In general, the information will grow use the determinant of the information
without Dbound as N increases. It is matrix which is commonly used for input
therefore reasonable to consider the design. The inputs optimizing this
average information matrix per sample function are usually called D-optimal
defined by inputs.
| An important advantage of the
M = 1lim - M (8)
Ny determinant criterion 1s that it 1is
It is assumeda that o2:=1 for invariant with respect to parameter
convenience. Substituting eq.?) into transformations with nonsingular
(3),(8) vyielas Jacobians (3,8}
T J = det M
M = E (awg “28)  (awy “28) (9

zdet(Mpgladet (Mga-MoeMes  IMgeT)  (15)
An expression for ( gwy 7~ 290) can ob T aa TatTen a®

Mat ana Mgy are constant
be obtainea by aifferentiating eq.(5)

matrices 1ndependent of the input
with respect to the relevant

paramerters. sequence fuyl. If the system ana
2wk “9a;=(B/CAYZ lug+(1/A) 2" dwy (10) noise transfer function have no common
(i=1, ....,n)
parameters, Myuy 1S shown to be
3wk 79by=-(1-C)z luy (11)
(iz1,....,m) null matrix. Only the Maa is
awg 79Cy=-(1-C)z lwy (12) dependent upon the input seguence
(i=1,...., 1)
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Therefore, in the following, only the

input-dependent part of the information

matrix Mgug Will be considered in
detall.
Mga = E (3wg “2a)T(awk “aa) (16)
Mga ¢€an Dbe also expressed as
the sum of two terms.
Mga = My + Mc (17>
Where M,; depends upon the input

sequence and Mg is a constant matrix

which has the elements me(i,J3)=

Ef(17A) w1 (17A)Wgk- 33 for t,J=1,..., 1

and the others are all zeros. This term
is resulted from the common parameters
in system and noise transfer functions.

The expression of My 1s given Dby

My = E £(1-CA)¢x (1-CAYpp 3 (18)
Where
$1e= [Bug—q Buy ., "Aug-1 Aup_pl

Using the following Sylvester matrix,

(0 by ..... Dp Oevvwvn- o]
00Dy vvvn. Dy O....0
S(B, -A) = |O......... ODby ... Pm| (19)
-1 -ag . -ap 0....0
O -1 ~aq..... -an 0...0
LO ....... O -ag ~an
ls

Mp=Ef(1-CA)S(B, ~A)U(1-CAYUTS(B, -aA>T}

= og2s(B, -A)EUUTST(B, -A) (20)

where Us[ug_q ...... Ug-n-m! T '
UzLfg-q .--..- Lo S

Og= (1-0gAC) Uk . OgS=Ef(1/ACIug: (21)

The above result states that My
is completely determined by 0y and
the (n+m-1) following autocorrelations

defined by

py = Efupup.i’ i=z1,2...,nrm-1 (e2)

Since Effig®i=1, the seguence
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Py} can be viewead as the
autocorrelation function of d4gk.

If the constraint is on the input
variance , the allowable set Dy 1s

D = [fu 3 Efu 3%=c 21

u Kk k u

= riu 3;0_CEtACh 3%=0 2 1 (23)
K a K u

Since eq.(23) clearly depends on the

first (m+r) autocorrelations of dy,

the criterion J in eq.(15) can Dbe

optimized Dby choosing the og® and

the autocorrelation function p of Tg.

...... pplT (24)

with p = n+max(m-1,r)

Stnce opg® 1S expressed as a

function of ey} from the

constraint, ipy3 are independent

variables for the optimization problem.

4. Optimal stochastic input realization

A sufficient condition for consistent
estimates of'vparameters is that the

input signal should e persistently

exciting of appropriate order. This

requirement makes it necessary that

Rpnem-1 DYPe positive definite,

Otherwise the sSystem 18 not 1locally

identifiable.

The matrix Ry 18 defined as

1Py vviiiin Pz
P1 S PLe-1
Ry = (25)
1 P
Pt Pk-1 -+ - Py 1

This additional constraint can Dbe
efficiently tested by using the partial

autocorrelation function

¢x

Properties described 1In the following

Lemma [11].



Lemma

The following statements are
equivalent:
1) lq’kl < 1 kK=1,...,p and pg > O

i1) Rp 1s positive definite

Let R be the set of the sequence {pi}

It is convenient to consider

R = B(R)+I(R) (26)

where 1(R):{p|Rp>O}
and B(R):={p}R 3O,R >0, | R | =03
¢ |R 30RO |R |
for some integer kK (m+n-1gX<{p)

If the polynomial's order relation

is r > m-1, p € B(R) or p & I(R).

Ifr ¢ m-1, then p € 1{R}.

In case of p € I(R), the sequenc

iy} can be determined sequentially

by the following Levinson-Durbin

algorithm (111,

The relevant equations are :

br+1="8K+1, Kr1

:(pk+1+ak' 1 PR+ +&k' kpl)/}\ke (27.1)
ag+1, 178K, 1 "¥Kk+18K, kel-1 (a7.2
( i=1,...,k )
Mer1SE AC (1= 12D (27.3)
with starting values
Az-a1, 1:p1  A1R=1-¢48 (27.4)

If we constrain p to Dbelong the

set I(R), the above recursion can e
iterateda for k-=i,...,p-1. Then the
recursion eq(27) will give , as a

byproduct, the following autoregression.

(1+ap, 1”1+ +ap pz Plag=ex (28)
Where €x is white noise with
Eteg®? = Amp? which exactly matches

the given autocorrelations tpy} [12].

In such a case the polynomial

Ap(z~ti=l+a, ,z-1. ., +ap, pZ P (293

has all its =zeros strictly outside the

unit disc {91

e
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Combining eq.(21) anada (28), the

optimal input ug*® can be easily
realized as an autoregressive moving
average process.

Ap(z hHup*=opxacz liccz ey (30)
with Efeg®}=Ap?

The coefficients of the polynomial A
and C are given from the preliminary
non-optimal input experiment.

If the constraint is on the output
variance, the allowable set Dy can
be also described by the first (m+r)
autocorrelations

of k.

D = fu |Ef(B A)u 32:=0 23
Y k K y
=tu_;o_PEiB(z"1)Cc(z71)@ 3%:=0 23 (31)
k' T K v
Thus the similar development as in
the case of input variance constraint

results in an open loop autoregressive

moving average input signal.

S. Conclusions

The optimal input design problem for
linear system which have the common
parameters in the system and noise
transfer functions.

Exploiting the assumed model structure
and deriving the information matrix
structure in detail, D-optimal open-loop
stochastic input can Dbe realized as an
ARMA process under the input or output

variance constraints,

In spite of the reduced order, it is
necessary to develop an efficient
algorithms for the optimation with
respect to the p.
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