ON OVERLAPPING TERRITORIES SATISFYING CARDINALITY CONSTRAINTS

Takashi MORIIZUMI+. Shuji TSUKIYAMA+, Shoji SHINODA+ Masakazu SENGOKU*, and Isao SHIRAKAWA++

- + Dept. Electrical Eng. Chuo University Tokyo, 112 Japan
- * Dept. Information Eng. Niigata University Niigata, 950-21 Japan
- ++ Dept. Electronic Eng. Osaka University Suita, 565 Japan

Abstract: Given a network with k specified vertices b_i called centers, a cardinality constrained cover is a family $\{B_i\}$ of k subsets covering the vertex set of a network, such that each subset B_i corresponds to and contains center b_i , and satisfies a given cardinality constraint. A set of cardinality constrained overlapping territories is a cardinality constrained cover such that the total sum of $T(B_i)$ for all subsets is minimum among all cardinality constrained covers, where $T(B_i)$ is the summation of the shortest path lengths from center b_i to every vertex in B_i .

This paper considers a problem of finding a set of cardinality constrained overlapping territories, and proposes an algorithm for the problem which has the time and space complexities are $O(k^3|V|^2)$ and O(k|V|+|E|), respectively, where V and E are the sets of vertices and edges of a given network, respectively. The concept of overlapping territories has a possibility to be applied to a job assignment problem.

1. INTRODUCTION

Let N = (G,1) be a network such that G is a undirected connected graph with vertex set V and edge set E, and 1 is a function assigning a nonnegative real number 1(e), called edge length, to each edge e∈E. In the network, k vertices b₁, $\mathfrak{o}_2,\ldots,\,\,\mathfrak{b}_k$ are specified, which are called centers or generators. For each center b_i, B_i denotes a set of distinct vertices containing b_i, and if family BB = { B_i } of these sets B_i ($1 \le i \le k$) satisfies the equality $U_{i=1}^{k}$ $B_{i} = V$, that is, the union of subsets \boldsymbol{B}_{i} of \boldsymbol{V} is equal to V, then BB is called a cover of V. In the following, we denotes a cover BB = { $B_i \mid 1 \le i \le k$ simply by $BB = \{B_i\}$.

In a given network N, the distance

d(u,v) from vertex u to vertex v is the shortest path length from u to v, where a length of a path is the total sum of edge lengths in the path. For subset B_i of a center b_i , let us define

Then, a cover BB with the minimum T(BB) among all covers is called a **set of overlapping territories**, and each subset B_i of BB is called a **territory** of b_i . We can easily see that if there is no constraint on the cardinality of each subset B_i , then overlapping territories BB is a (ordinary) territories, that is, each territory is pairwise disjoint and the cover BB is an exact cover or a partition of V.

A cover BB is called a cardinality constrained cover (abbreviated simply CC cover), if the cardinality (Bi) of each subset Bi of BB satisfies a given condition $M_i \leq |B_i| \leq N_i$ for the subset specified by two integers M_i and N_i such that

In this paper, we consider a problem of finding a CCOT under the assumption that two integers Qj and Rj are assigned to each vertex \mathbf{v}_j such that vertex \mathbf{v}_j must belong to Qj different subsets and may not belong to more than Rj different subsets, where these Qj and Rj satisfy the following conditions:

$$\begin{array}{lll} 1 \leq Qj \leq Rj \leq k, \ \mathrm{for} \ 1 \leq j \leq k, \\ \sum_{i=1}^{K} \ \mathrm{M}_{i} \leq & \sum_{v_{j} \in V} \ \mathrm{Rj}, \\ \sum_{v_{i} \in V} \ \mathrm{Qj} \leq & \sum_{i=1}^{K} \ \mathrm{N}_{i}. \end{array}$$

Hence, if Qj = Rj = 1 for every vertex v_j , then a desired CCOT becomes a set of cardinality constrained (ordinary) territories. Moreover, if there is no

cardinality constraint on every subset B_i , then territories can be obtained from a Voronoi diagram^[1,2] on network N by putting every vertex with more than one nearest centers into one of the Voronoi polygons of the nearest centers.

The concept of CCOT has a possibility to be applied to a scheduling problem, especially a job assignment problem. For example, each project (or job) corresponds to a center (representing project leader) and has two integers M and N such that at least M and at most N persons (or processors) are necessary to execute the job. Each employee (or processor) corresponds to a vertex and has an integer R representing the number of jobs which can be performed simultaneously. Graph G of network N = (G,1) denotes connection between persons (or processors) and edge length indicates distance or strength of the connection. In such a model, CCOT gives an optimal job assignment such that all the jobs are executed in a short time.

In the following, we use basic terminologies of a graph and a network without definitions (See [3,4] for definitions).

2. ASSOCIATED GRAPH AND UPDATE PROCESS

Given a CC cover BB = { B_i } for network N = (G,1), let us define a value $l*(b_i,v_j)$ for center b_j and vertex v_j in subset B_j and center b_i in subset B_i as follows:

 $1*(b_i, v_j) = d(b_i, v_j) - d(b_j, v_j)$. Then, this value represents the increment of T(BB) caused by displacing v_j from B_j to B_i . Namely, let BB' be a CC cover obtained from BB by displacing v_j from B_j to B_i , and we have

 $T(BB^*) = T(BB) + 1*(b_i, v_j).$

With the use of this value, we define a weighted digraph G*(BB) for a CC cover BB, which is called the associated graph of BB, as follows:

- (i) Each vertex b_i* of G*(BB) corresponds to a subset B_i of BB.
- (ii) For every ordered pair (b_i*,b_j*) of distinct vertices such that $B_j B_i (b_j)$ contains at least one vertex v_j , there exists a directed edge incident from b_i* to b_j* with the length $l*(b_i*,b_j*)$ such that

 $1*(b_i*,b_j*) = min \{ 1*(b_i,v_j) \}$ $v_j \in B_i - B_i - \{b_i\} \}.$ For an edge $e* = (b_i*,b_j*)$ of G*(BB), let head(e*) be a vertex v_j such that $l*(b_i*,b_j*) = l*(b_i,v_j)$, and we can easily see that there holds the following equality for a CC cover BB' obtained from BB by displacing head(e*) from B_i to B_i:

 $T(BB') = T(BB) + 1*(b_i,head(e*))$ = $T(BB) + 1*(b_i*,b_i*).$

Let us conduct this displacement process repeatedly for every edge e* on an elementary dipath P* of G*(BB).

Step-2: While q > 0, conduct step-3 with respect to edge $e_q * = (b_{i_q} *, b_{i_{q+1}} *)$ on P*.

Step-3: Displace head(e_q*) from B_{i_q+1} to B_{i_q} , and return to step-2 by setting q=q-1.

By BB[P*], we denote a cover obtained from cover BB by this UPDATE PROCESS with respect to a dipath P* of G*(BB). Then, subset B_{i_1} and B_{i_r} of BB[P*] = (B_{i_1}) has exactly by one vertex more and less than the corresponding subsets B_{i_1} and B_{i_r} of BB, respectively, and other subsets of BB[P*] have exactly the same number of vertices as those of BB. Moreover, there holds the following lemma.

[Lemma 1]

Let P* be an elementary path from b_{i1} * to b_{ir} * in G*(BB) which contains no cycle of negative length, and we have the following inequality;

 $T(BB[P*]) \leq T(BB) + d*(P*),$ where d*(P*) is the length of dipath P* in G*(BB). Moreover, if P* is a shortest path from $b_{i1}*$ to $b_{ir}*$, then the equality holds.

The proof of this lemma is omitted here.

This lemma indicates the following fact. Namely, let BB be a cover such that G*(BB) has no cycle of negative length, and let BB' be a cover obtained from BB by displacing a vertex v_j from B_j to B_j . Then, by applying UPDATE PROCESS stated above to BB with respect to shortest path P* from b_i* to b_j* , we can construct a cover BB[P*] such that T(.)

value is not greater than BB', that is,

 $T(BB[P*]) = T(BB) + d*(P*) \le T(BB'),$ and every subset B_i of BB[P*] has the same number of vertices as that of BB'.

Moreover, let L* be an elementary cycle of G*(BB), and we can regard L* as a dipath starting from and ending at the same vertex. Therefore, if we apply UPDATE PROCESS to BB with respect to this L*, then we have a cover BB[L*] such that every subset has the same number of vertices as that in BB and there holds

 $T(BB[L*1) \le T(BB) + d*(L*),$ where d*(L*) is the length of cycle L*.

3. BASIC THEOREMS

In this section, we consider a method to modify an overlapping territories BB to a CCOT with the use of UPDATE PROCESS with respect to a shortest dipath in the associated graph G*(BB). To do this, we have to define the following four sets $B_{mr}*$, $B_{ex}*$, $B_{ls}*$, and $B_{st}*$ of vertices of G*(BB) with respect to a cover BB,

 $B_{mr}* = \{ b_i* | M_i < |B_i| \}, \\ B_{ex}* = \{ b_i* | N_i < |B_i| \},$

 $B_{is}* = \{ b_i* : |B_i| < N_i \}, \\ B_{st}* = \{ b_i* : |B_i| < M_i \},$

where M; and N; are two specified integers representing constraints on the cardinality of subset B;∈BB. From the definitions, we can readily see that B_{mr}* \supset B_{ex}*, B_{st}* \subset B_{ls}*, and BB is a CC cover if both $B_{e\,x}*$ and $B_{s\,t}*$ are empty. Moreover, a set of territories BB is a desired CCOT, if both $B_{f ex}*$ and $B_{f st}*$ are empty and every v_i is contained in more than Qj-1 and less than Rj+1 subsets. We also see that subsets B; and B; corresponding to vertices $b_i * \in B_{mr} *$ and b_i*∈B_{ls}*, respectively, are the ones which satisfy given cardinality constraints even if the numbers of vertices in the subsets are decreased and increased by one, respectively.

[Theorem 1]

A given CC cover BB = (B_i | $M_i \le |B_i| \le N_i$, $1 \le i \le k$) is a CCOT, if and only if the associated graph G*(BB) of a CC cover BB contains neither a cycle L* of negative length d*(L*) < 0 nor a dipath P* of negative length d*(P*) < 0 from a vertex $b_i * \in B_{1S} *$ to a vertex $b_j * \in B_{mr} *$.

This theorem indicates a necessary and sufficient condition for a CC cover to be a CCOT, while the following theorems imply a method to modify a set of overlapping territories to a CCOT. We also omit the proofs of the theorems.

[Theorem 2a]

In the associated graph G*(BB) of a CCOT BB = (B_i | $M_i \leq |B_i| \leq N_i$, $1 \leq i \leq k$), let P_0* be a shortest dipath from a vertex b_s* , corresponding to subset B_s with $M_s = |B_s| \leq N_s$, to a vertex $b_j* \in B_{mr}*$, and let $BB[P_0*] = BB' = (B_i')$ be a cover obtained from BB by UPDATE PROCESS with respect to P_0* . Then, $BB[P_0*]$ is a CCOT such that subset B_s' corresponding to b_s* satisfies $M_s+1 = |B_s'| \leq max(\ N_s, |B_s|+1)$, and any other subset B_i' satisfies $M_i \leq |B_i'| \leq N_i$.

[Theorem 2b]

In the associated graph G*(BB) of a CCOT $BB = \{ B_i \mid M_i \leq |B_i| \leq N_i, 1 \leq i \leq k \}$, let P_0* be a shortest dipath from a vertex $b_j*\in B_{ls}*$ to a vertex b_t* , corresponding to subset B_t with $M_t \leq |B_t| = N_t$, and let $BB[P_0*] = BB' = \{B_i'\}$ be a cover obtained from BB by UPDATE PROCESS with respect to P_0* . Then, $BB[P_0*]$ is a CCOT such that subset B_t' corresponding b_t* satisfies $\min\{|M_s,|B_t|-1\}\} \leq |B_t'| = N_s-1$, and any other subset B_j' satisfies $M_i \leq |B_i'| \leq N_i$.

In order to devise an algorithm to find a CCOT by using these theorems, we have to introduce a dummy center b_{k+1} into network N such that b_{k+1} is connected with every vertex \mathbf{v}_{j} (including centers) by edges (b_{k+1}, v_i) of zero length $l(b_{k+1}, v_i) = 0$, and the corresponding subset \tilde{B}_{k+1} has the cardinality constraint such that $M_{k+1} = N_{k+1} = 1$. This dummy center b_{k+1} and its subset $B_{\mathbf{k+1}}$ are used to handle the multiplicity of a vertex, in such a way that B_{k+1} contains $\mathbf{b_{k+1}}$ and vertices $\mathbf{v_{i}}$ each of which is contained in less than Qj (or Rj) subsets of ($B_i \mid 1 \le i \le k$), and B_{k+1} is reconstructed, every time a CCOT is updated. Henceforth, we denote by m; the number of multiplicity of vertex \vec{v}_j in subsets B_1 , B_2 ,..., B_k , that is, the number of subsets B; (1≦i≦k) containing

The outline of the proposed algorithm is as follows:

Firstly, each subset B_i $(1 \le i \le k)$ contains center b_i alone, and subset B_{k+1} contains b_{k+1} and vertices v_j such that $m_j < Q_j$. Then, we can easily see that the cover $BB^0 = \{ B_i^{\ 0} \mid 1 \le i \le k+1 \}$ thus obtained is a CCOT such that each $B_i^{\ 0}$ $(1 \le i \le k)$ satisfies $1 = |B_i^{\ 0}| \le N_i$ and subset $B_{k+1}^{\ 0}$ satisfies $1 \le |B_{k+1}^{\ 0}| \le |V|$. Moreover, let B_{st}^{*0} and B_{mr}^{*0} be the sets of vertices similarly defined to B_{st}^{*} and B_{mr}^{*} in $G^*(BB^0)$, respectively, then $B_{st}^{*0} \subset \{b_i^{*} \mid 1 \le i \le k \}$ and $B_{mr}^{*0} = B_{ex}^{*0} = \{b_{k+1}^{*0}\}$.

Secondly, UPDATE PROCESS is applied to this BB 0 with respect to a shortest dipath P_0* from a vertex $b_s*\in B_{st}*^0$ to $b_{k+1}*$, and we can see from Theorem 2a that cover BB 1 = BB 0 [P_0*] obtained by UPDATE PROCESS with respect to P_0* is a CCOT such that $B_s^1\in BB^1$ corresponding to b_s* satisfies $2 \approx |B_s^1| \leq N_s$ and any other subset $B_i^1\in BB^1$ satisfies the same constraint as in BB 0 . Then, we reconstruct B_{k+1} of BB 1 as a subset containing b_{k+1} and vertices such that $m_j \in P_0$, since the vertex displaced from B_{k+1}^0 by UPDATE PROCESS may be contained in B_{k+1}^{0} .

Thirdly, the process described above are repeated until $B_{\mbox{\scriptsize S$}\mbox{\scriptsize t}}*$ becomes empty or

 $B_{k+1} = (b_{k+1})$. If $\sum_{i=1}^{k} M_i > \sum_{v_j \in V} Q_j$, then we have $B_{k+1}^{\ \ h} = (b_{k+1})$ and $B_{st}^{\ \ k} \neq \phi$ after a certain number, say h, of iteration; otherwise there holds $B_{st}^{\ \ k} = \phi$, before $B_{k+1}^{\ \ h}$ becomes $\{b_{k+1}\}$.

In the case of $B_{k+1}^h = \{b_{k+1}\}$, we have a CCOT BB^h such that every vertex v_j is contained in Qj different subsets, and each subset $B_j \in BB^h$ satisfies

$$M_i^h = |B_i^h| < N_i$$
; if $B_i^h \in BB_{st}^h$,
 $M_i \le |B_i^h| \le N_i$; if $B_i^h \in BB_{st}^h$,

where BB_{st}^h is a family of subsets B_{th} corresponding to a vertex $b_a*\in B_{st}*^h$ and M_i^h is an integer equal to ${B_i^h}!$. Thus, we reconstruct B_{k+1}^h of BB^h as a subset containing b_{k+1} and vertices v_j such that $m_j < R_j$, and repeat UPDATE PROCESS similarly to the above. Then, we finally obtain a desired CCOT when $B_{st}*$ becomes empty.

In the case when $B_{st}*^h$ becomes empty in the h-th iteration, if $B_{k+1}^h=\{b_{k+1}\}$ at that time, then we have a desired CCOT BB^h at the same time. Otherwise, we have to distribute the remaining vertices in

 $B_{k+1}^{\ \ h}$ exclusive of $b_{k+1}^{\ \ }$ to appropriate subsets. Thus, by using Theorem 2b, we repeat UPDATE PROCESS with respect to a shortest dipath from a vertex of B_{ls}^* to b_{k+1}^* , until B_{k+1} becomes a singleton. Then, we finally have a desired CCOT. In the repetition, we have to reconstruct B_{k+1} as a subset containing b_{k+1} and vertices v_j such that $m_j < Q_j$, every time a cover is updated.

4. ALGORITHM

Before describing the details of the proposed algorithm, let us consider a method to find a shortest dipath in an associated graph G*(BB).

Although a given network N has no edge of negative length, the associated graph G*(BB) of a cover BB may have such an edge, and hence we cannot use Dijkstra-like algorithm^[3,5] for finding a shortest path. However, in each iteration of the algorithm, the associated graph G*(BB^h) is constructed for a certain CCOT BB^h, and hence we can see from Theorem 1 that G*(BBh) has no cycle of negative length. Therefore, as is well known in algorithms for the minimum-cost flow problem[3,5], we can modify the edge length 1*(e*) of each edge $e*=(b_{ij}*,b_{ij}*)$ in G*(BB^h) to a nonnegative edge length l**(e*) by the following equation;

 $1**(b_{u}*,b_{v}*)$

 $= 1*(b_{u}*,b_{v}*) + p(b_{u}*) - p(b_{v}*),$ where p is a function assigning to each vertex v_{j} a nonnegative real value $p(v_{j})$ (usually the distance from the origin of the generated shortest path). By this transformation, the length d*(L*) of a cycle L* is not changed, and the length d*(P*) of a dipath P* from $b_{s}*$ to $b_{t}*$ is changed to $d**(P*) = d*(P*) + p(b_{s}*) - p(b_{t}*)$, and hence if $p(b_{s}*) = 0$, the original length d*(P*) of dipath P* is given by $d*(P*) = d**(P*) + p(b_{t}*)$.

The detailed description of the proposed algorithm is as follows:

<Initialization Step>

I-1: For every pair of center b_i and a vertex v_j , calculate the distance $d(b_i, v_i)$ from b_i to v_j , and store them in order to calculate $l*(b_i, v_j)$

easily. I-2: Let $B_i = (b_i)$ and $p(b_j*) = 0$ for $1 \le i \le k+1$. Then, $BB = \{B_i \mid 1 \le i \le k+1\}$ and T(BB) = 0.

- I-3: Set flag = 0, which indicates what vertices are added to subset B_{k+1} . $\langle \text{Iteration Step} \rangle$
- II-1: If flag = 0, then vertices v_j such that $m_j < Q_j$ are added to B_{k+1} ; otherwise (flag = 1), vertices v_j such that $m_j < R_j$ are added, where m_j is the number of subsets B_i ($1 \le i \le k$) containing vertex v_i .
- II-2: If $B_{k+1} = (b_{k+1})$ and $B_{st}* = (b_{i}* | B_{i}| < M_{i}) = \phi$, then $BB (B_{k+1})$ is a desired CCOT, and hence terminate. If $B_{k+1} = (b_{k+1})$ and $B_{st}* \neq \phi$, then set flag = 1 and return to II-1. If $B_{k+1} \neq (b_{k+1})$ and $B_{st}* = \phi$, then go to III-1.
- II-3: Construct the associated graph G*(BB) of $BB = (B_i \mid 1 \le i \le k+1)$, and modify each edge length $l*(b_i*,b_j*)$ to

1**(b_i*,b_j*)

 $=1*(b_{i}*,b_{i}*) + p(b_{i}*) - p(b_{i}*).$

- II-4: In network (G*(BB), l**), calculate the shortest, path length $D(b_i*)$ from a vertex in $B_{st}*$ to each vertex b_i* . Then, let P* be a shortest dipath from a vertex $b_s* \in B_{st}*$ to $b_{k+1}*$ whose length is $D(b_{k+1}*)$.
- II-5: Apply UPDATE PROCESS to BB with respect to P*, and set

 $T(BB) = T(BB) + D(b_{k+1}*) + p(b_{k+1}*).$ II-6: Return to II-1, after setting

 $p(b_i^*) = p(b_i^*) + D(b_i^*)$ for each $1 \le i \le k+1$ and $B_{k+1} = \{b_{k+1}\}$.

(Distribution Step)

III-1: Construct the associated graph G*(BB) of BB and modify the edge length as described in II-3.

III-2: Introduce a new vertex b_0* and edges (b_0* , b_i*) of lengths $l**(b_0*,b_i*) = -p(b_i*)$ incident from b_0* to vertices b_i* of $B_{ls}* = \{b_i*\}$ ($B_{ls}* \in N_{ls}$).

III-3: Calculate the distance $D(b_i*)$ from vertex b_0* to every vertex b_i* , then let P* be a subpath from a vertex of $B_{ls}*$ to $b_{k+1}*$ of a dipath from b_0* to $b_{k+1}*$ whose length is $D(b_{k+1}*)$.

III-4: Apply UPDATE PROCESS to BB with respect to P*, and set

 $T(BB)=T(BB) + p(b_{k+1}*) + D(b_{k+1}*).$ Then, let B_{k+1} be a set containing b_{k+1} and vertex v_i such that $m_i < Q_i$.

III-5: If $B_{k+1} = (b_{k+1})$, then $BB - (B_{k+1})$ is a desired CCOT, and hence terminate. Otherwise, return to III-1 after setting $p(b_i*) = p(b_i*) + D(b_i*)$ for each $1 \le i \le k+1$.

During <I teration Step> in the algorithm, the number of vertices in a subset B_s corresponding to a vertex $b_s*\in B_{st}*$ increases one by one, and the number of vertices in $B_{st}*$ decreases gradually. Therefore, every time a shortest path from a vertex in $B_{st}*$ is calculated in II-4, there holds $p(b_s*) = 0$ for every $b_s*\in B_{st}*$. Thus, T(BB) value is correctly computed in II-5.

In III-2 of the algorithm, we introduced new edges of negative lengths. These edges and lengths are used for finding a shortest path from a vertex $\mathbf{b_i}*$ of $\mathbf{B_{ls}}*$ to $\mathbf{b_{k+1}}*$ correctly. Although these edge lengths are negative, we can use Dijkstra-like algorithm, since such edges are all restricted ones. Thus, we can prove the following lemma which is used for verifying the correctness of the algorithm, although we omit the proof.

[Lemma 2]

In the associated graph G*(BB) constructed in any stage of the algorithm, we can calculate distance D(.) correctly by Dijkstra-like algorithm.

Finally, we consider the time and space complexity of the algorithm.

It is not difficult to see that the space complexity is O(k|V|+|E|), since O(k|V|) space is necessary for storing distance $d(b_i,v_j)$ for every pair of center b_i and vertex v_j , $O(k^2)$ for an associated graph G*(BB*), and O(|V|+|E|) for all others, where V and E are the sets of vertices and edges of a given network, respectively.

As for the time complexity, (Initialization Step) from I-1 to I-3 require $O(k|V|^2)$ time, since the distances from a single source to all vertices can be calculated in O(|V|2) by Dijkstra-like shortest path algorithm. The construction of an associated graph in II-3 or III-1 requires $O(k^2|V|)$ time, since we have to check all pairs of subsets and each subset may have O(!V!) vertices. The distance calculation in H-4 or HH-3 can be executed in $O(k^2)$ time by Dijkstra-like algorithm, and all other processes can be done in O(k) time. Therefore, one iteration of <Iteration Step> from II-1 through II-6 or (Distribution Step) from [II-1 through III-5 requires $O(k^2|V|)$ time. On the other hand, the number of iterations of <Iteration step> or <Distribution Step>

is at most k!V! times, since every subset \mathfrak{o}_i ($1 \le i \le k$) has at most !V! vertices and exactly one vertex is added to a subset B_i ($1 \le i \le k$) in II-5 or III-4. Thus, we can see that the time complexity of the algorithm is $O(k^3 |V|^2)$ totally.

5. CONCLUSION

In this paper, we have considered a problem of finding a set of overlapping territories which satisfies given cardinality constraint on every territory and multiplicity constraint on every vertex, and have proven a few theorems which imply an algorithm to find a set of cardinality constrained overlapping territories in $O(k^3|V|^2)$ time, where k and |V| is the numbers of centers and vertices of a given network, respectively. Similar discussion can be done when each center and/or each vertex have weights, and T(BB) is defined with the use of these weights.

Concerning territories, there remains some problems to be considered, among which of primary importance is a problem of finding territories such that each territory B_i induces a connected subgraph of a given network.

REFERENCES

- [11] F.P.Preparata, M.I.Shamos: Computational Geometry, Springer-Verlag, New York, pp.198-257, 1985.
- [2] T.Asano, M.Sato, T.Ohtsuki: "Computational geometry algorithms," Layout Design and Verification, Ed. T.Ohtsuki, North-Holland, Tokyo, pp. 295-347, 1986.
- [3] M.Iri, I.Shirakawa, Y.Kajitani, S.Shinoda, et al.: Graph Theory with Exercises, Corona Publishing Co., Ltd, Tokyo, 1983 (in Japanese).
- [4] F.Harary: Graph Theory, Addison-Wesley, Reading, 1969.
- [5] E.L.Lawler: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.