'87 KACC 1987.10.16 ~17

An Architecture and its Performance Evaluation of

A Multiprocessor Based Programmable Controller{MBPC)

Jongil Kim, Wookhyun Kwon, and Hongsung Park

Department of Control and Instrumentation Eng

Seoul National University, Korea

ABSTRACT
INFOBUS,

a multiprocessor system,
of the multiple

which has been designed as a system bus of
And the
and ORed write

will be introduced.
concepts transfer

transfer will be described. These concepts make
of
the multiprocessor based programmable controller(MBPC).
In addition,

INFOBUS, which

performance of a bus,

INFOBUS to be well suited for use as the system bus

transfer
of the

will be obtained by analysis and

the mean data time through

is one most significant
simulation.

Next, MBPC which uses INFOBUS as its system bus will
be introduced, and some basic characteristics of MBPC
will be described. The construction of exact model for
MBPC will be given and simulated using SDL/SIM package.
The of

described also. Some results from the simulation will

reference system our model will be briefly

be given and validated.

1. Introduction
Parallel processing have received wide attention
the of
especially in processing speed.

the

to

overcome limitation computing systems,

But we should keep in

mind sequential nature of most conventional

computing systems. It imposes certain constraints on

how problems are executed, on which algorithms and

programs are used, on how information can be exchanged.
Moreover, the most factor

important limiting

computational speed is not availability of appropriate
which solves sequence programs
I/0.

time required to update /0.

concurrently with the

updating With this approach, we can reduce the

Scan time, the speed at which a PC can execute its

complete control cycle, 1is critical for fast response

operations, therefore limits a PC’s processing power

and functionality. It is mainly determined not only by

the time to update I/O, but by the time to solve its
application program. We can reduce the time to update
1/0, but how about the time to solve its application
program? TI 560/565 can be configured to have two

863

processors for solving the application program, but it

does not utilize complete multiprocessing. It only

executes the discrete part and the analog part of an

application program concurrently. Also, there may be
to do this. A

methodology has

special-purpose

adopted

another approach
processor been in

Modicon 584 PC system[20].

design
It has been designed using

microprogramming method with a bit-slice architecture,

mainly to reduce the time to sclve an application
program and to meet the bit data structure of the
sequence programs used in PC. But there are no
parallel structures.

There are many  parameters to  evaluate the
performance of PC’s. The processing speed, the
capacity, and the reliability are the most significant

indexes. In our simulation, however, we will focus on

the processing speed; the scan time of PC, and will
focus on the performance of INFOBUS.
we will describe some restrictions of

The

In Section 2,
PC

introduction of ladder diagram, which is widely used as

on implementing multiprocessor architecture.
a programming language of PC, will be also given.

we will describe INFOBUS, which has
the

In Section 3,

been designed as a dedicated system bus for

multiprocessor based PC. There are many features which

make INFOBUS to be well suited for the PC with
multiprocessor architecture. Among them, the concepts
of multiple transfer and ORed write transfer are
described  more specifically. And the mean data
transfer time through INFOBUS will be analyzed and
simulated based on the exact data taken from the

existing hardware.

In Section 4, MBPC will be introduced, and some of
Based on
the model of MBPC will be

and simulated using SDL/SIM

its basic characteristics will be described.
some reasonable assumptions,
constructed in Section 5,
package(17][18].

and validated.

Some simulation results will be given

9. Restrictions of PC on implementing MBPC

The PC was originally developed as a sequential



control device to replace electromechanical relays in

the factory. From the early stage of PC, it was used

by the factory engineers, who design, operate, and

maintain the control systems. Since ladder diagram is

a method of representing a system of relays, switches,

solenoids, lsmps, etc., it has been chosen as the

programming language because it is easily understood by
the ladder diagram has

the factory engineers. By now,

been enhanced by the PC manufactures to add program
flexibility of

minicomputer{5]. We will simulate the model

general
of MBPC

and sophistication a

based on the ladder diagram, which is the most general
language of PC.

Since each element in the ladder diagram corresponds
it can be represented by

the data

to the relays, switches, etc.,
two states; ON and OFF. So
operands of PC’s are bit addressable.

most of microprocessors have byte

we can.say that
Since, however,
or word type data
it is difficult to construct an efficient
without special

We will call this kind of problem as data

structures,
PC system by using microprocessors
structure.
type incompatibility problem throughout this paper.

Next problem arises from the sharing of the ladder
diagram among the processors. If we can overcome the
data type incompatibility problem, each processor will
probably hold the

below;

data arranged in the form shown

3. INFOBUS — The Information Bus
INFOBUS has been designed as a dedicated system bus
for the mnultiprocessor
system (MBPC).

stated in Section 2.

based programmable controller
It is intended to resolve the problems
shows and the basic

The Figure 2 the signals

structure of processing element(PE) on INFOBUS.

INFOBUS PE.
ZITPM access signals
Transfer control signals TPM

<
Arbitrary trensfer signals

J
System management signals 2
Interprocessor signals CBC T e

Y0015 Y0000

lal- - = l8]8] =« » « » « + .
Y0031 Y0016 Y1023 Y1008
[Blal« « ~T87a] [BIB] < - - [a[4]

Fig 1. The output data arrenged in PC

The ladder diagram has been divided and distributed
A and B. PC
the
In case of the processor
it may change the output relays Y0015, Y0016, Y0032,

the Y0000,
since included in
each

to the two processors, In general cases,
may change the state of output relays according to
ladder

A,

diagram given to it.

etc., but must not change
Y0001, Y0014,

processor B.

output relays

etc., they are

In the course of solving, however,

processor may be able to use the data not a part of

their own, so the exchange of results is required. But
such communication will be performed on the word basis;
for example, a 16 bit word data, which includes Y0000
through Y0015, will be exchanged between A and B.
These data cannot be used directly, however. This
situation can be resolved as follows; each processor
clears the bits not a part of their own and sends them
to the

other. Then the receiver performs bitwise OR

operations between received data set and his own data

set cleared in the same way. If MBPC contains more

than two processors, how to resolve such a problem?

Does MBPC have to perform OR operations several times
as needed? This problem is one of the most difficult

problem to overcome in constructing MBPC.

864

CPU

Fig. 2 The signals in INFOBUS

INFOBUS has the following 4 major characteristics :
— Time—Slot shared bus
of
two—port-memory (TPM)

- Exchange information via specially designec
— Multiple transfer operation
- ORed write transfer operation

There are many methods by which a system share

In case of INFOBUS,

a
the time is
divided into many slots and only and only of the
We will call the

common system bus[6].
one
PE’s can use each time slot as owner.
owner as a master and the others as slaves. The slaves
are prevented from accessing the bus, so the master can
use it alone. At least one system controller should be
necessary to schedule the order of master.

Each PE on INFOBUS should have

two—port-memory(TPM). Through TPM,
communicate and exchange information with
To

specially designed
the PE’s
each

can
other.
resolve the data type incompatibility, a specially
structured hardware can be designed as done in Modicon
584(20].

relatively simple concept or designed to resemble a CPU

Such hardware can be designed based on the

in functional structure. In our working model[l16],

which will be described briefly later, a special
hardware called a Hardware Logic Solver (HLS) has been
designed. But still there are some problems in
PC. In
a task should be divided
do
to divide the

the

constructing a multiprocessor = based
multiprocessor
and distributed to PE’s.
this(7][8]. It
task( the ladder diagrem ) to include all
part of the data; i.e, in Fig 1,

Y0000 through Y0511 while processor

through Y1023.

environment,
There are many methods to
is almost impossible
linear
processor A contains

B Y0512

This is so because these data operands

contains
are uniformly distributed to the whole ladder diagram.
The disadvantages of such a problem has been discussed
in Section 2. Therefore, it is too difficult to divide
the task not deteriorating the system performance and
to minimize the data type incompatibility problem.

1.

randomly

Again refer to Fig. Processor A produces N bits

of results which are distributed, and

transfers them to the other PE’s.
do the

Then next processors

same thing sequentially. After the end of




communication, each PE should do logical OR operations
among these data sets prior to use them as mentioned.
Because such data are too large, this procedure seems
to be time—consuming and inefficient. To overcome this
situation, the concepts of multiple transfer and CRed
write transfer have been introduced. Multiple transfer
can be stated that a master processor transfers a word
of data to many other processors’ TPM at one bus cycle.
And ORed write operation enables us to perform bitwise
logical OR  operations between the source and
destination data at one memory write cycle. This is a
kind of read-modify-write operaticn. Both operations
can be easily implemented by adding some logic into the
TPM. These two concepts are the features that make
INFOBUS well suited to MBPC. Combining them we can
enhance the speed of exchange results among PE’s, hence
some restrictions described in  Section 2 are
eliminated.

Also INFOBUS has some general features as system
bus. INFOBUS has been designed to be a system bus for
PC, real-time processing capabilities are necessary.
Thus, INFOBUS has arbitary transfer operation, by which
the PE’s can transfer information at any time. And
INFOBUS contains some system management signals which
make the system to transfer real time information and
cantrol information.

The mean transfer time of INFOBUS 1is an important
parameter to the system behavior. Because memory cycle
depends on the type of processor, a microprocessor
based system is to be modeled. In this paper, the
construction of model is based on the working
system(16]. We assummed the PE’s are designed using
68000 microprocessor, and TPM’'s are designed using MOS
static RAM with 120 nsec access time which are
commercially available now. And INFOBUS interface
circuits are constructed mainly using TTL logic
devices. Based on these assumptions we can get more

concrete data.
Each CPU is running at the frequency of 8 MHz. We

designed TPM using 22.12 MHz clock as its basic
reference timing, and calculated the propagation delay
time and port switching time. As a result the value
83.8 nsec has been obtained as the time of switching

from port to port in TPM.
Using this and the parameters taken from the 68000

data sheets, we could simulate the behavior of
exchanging information through INFOBUS. The SDL/SIM
has been used in this work, which can describe the
discrete time events on the state transition basis [17]
[18]. We assummed the competing PE's are trying to
access the TPM infinitely. One and only one master is

performing multiple ORed write transfer to many TPM’s

on INFOBUS,while the other slaves are reading data memory.

from their own TPM and transfer them to their own local
The simple and probably the most effective block
transfer program written in 68000 assembly language is

shown below:

[ program 1 ]. A block transfer program
set: move #(word_size/2-1),d7 ;how many 32 bit words?

move.l #source_addr,al ;master = local memory
islave = TPM
move.l #destination_addr,ali;master = TPM
;slave = local memory
loop:move.l (aQ)+, (al)+ ;block transfer here
dbf d7, transfer
next: Ve ;next operation

We have counted up the mean clock cycles needed to
execute the [program 1]; 15 clocks to transfer one word
or 15/16 clocks to transfer one bit in case of no
contention.

In real situations, however, the contention increases
as the number of PE’s increases. It 1is possible to
predict it using some equations, but the statistical
property of the contention makes it inaccurate. The
simulation 1is the best way to obtain more accurate and
realistic results([9][10][11).

In our model of simulations, the execution cycle of
each instruction in program 1 corresponds to one state
in the simulation, and each state wastes the execution
time of its original cycles. Except for the memory
cycles accessing INFOBUS or TPM, it is assummed that
there are no contentions. When contention occurs in
accessing INFOBUS or TPM, however, the waiting time is
added according to the exact model of 68000 and
INFOBUS.

The result is shown in Figure 3. The number in

X-axis means the number of processoers. And in all

cases there exits only one master. Hence, for example,

the 3 means that there are one master and two slaves

exist. We can observe that in all cases INFOBUS and
TPM access time take almost the same value. From the
graph, it is observed that the waiting time are

negligibly small until there exist four processors !
one master and two slaves). And there occurs a sudden
increase in the waiting time at 5 and 7. The waiting

time 1increases rapidly and continuously after 7. This

Mean Word Transfer Time of lNFOBU?W

2B e e e e e e e e
) O Moster Transfer T
+  Slave Tronafer T
2.4
-~
3
€ 2.3 -
$
j 2.2
LY
£
<21 ////
°
E Ve
Foad B o
H ~
: -~
| S o o
=
18-
=
§17
3
1.6
L T e 2 S e
1 2 3 4 5 6 7 a [}

Number Of Processar

Fig.3 The mean access time of INFOBUS and TPM
865



result seems to be very extraordinary. From the fact

that all PE’s execute the same instructions, however,

Time 3lot Local Update | Wait Time lot
write transfer | input relays [ welte

I(a) 0(B) (a) ' I(B)

we can state that the bus utilization can be

synchronized and stablized after some contentions in

PE2 /Ioé//

the case of less than 8. But after 8 this is no longer

true. {

From the results we can conclude that if we can
schedule the number of PE’s competing to access INFOBUS
less than or equal to 4, the most efficient bus
utilization can be obtained.

4. MBPC - The Multiprocessor Based PC
MBPC is a programmable controller based on the

multiprocessor architecture, which has INFOBUS as its
system bus. It consists of a system controller,

discrete processors, I/0 processors, and analog
processors. The system controller supervises the
entire system and maintains INFOBUS. The discrete
processors solve the ladder instructions, and I/0
processors handle the input and output data which -have
been acquired from or will be sent to the external
system. The analog bprocessors perform the analog
control functions such as PID. A typical configuration
of MBPC is shown:

System Controller Discrete Processor 1 Discrete Processor N

PP i cATPM) oM
ayigica] el (]
S
HLS HL cQABOBO0
JEON VOUWIDUSS SRR

]
cac CBC

INFPBUS
1/p Prpcessor|1
CBC CBC

T M Meoo oo
"""ﬁ'l By & e
I iy 1 PM TOCM |H
()il ] o < i o)

Fig 4. A typical configuration of MBPC

rocessqr N.

Based on the above configuration we will investigate
the performance of MBPC; especially, the most
significant performance index, the scanning time, and
the utilization of INFOBUS.

Prior to the simulatation of our model, the
scheduling principle should be determined. There are
many scheduling techiniques available on multiprocessor
environments{12]{13][14]. In case of MBPC, the number
of processors competing to use TPM should be maintained
less than 4 from the result of Section 3. But in this
paper, we adopted the simplest form of scheduling, the
First-come-first-served discipline, which selects the
master of time slot in chronological order of arrival
[15]. We don’t care of the optimality of scheduling,
but this is so simple that the software overhead for
scheduling can be minimized. The Figure 5 shows the
scheduling principle used in MBPC.

5. Simulation of MBPC

To construct the simulation model of MBPC, we assume
the followings.

- We will use the exact data taken from the result of
Section 2.

— We neglect the analog processors. This assumption

866

Z10P17 PEL
Solve Ladder | Wait Time Slot | Local transter Solve Lauder
0(A),C(a) write read O(B)=F{T(B),C(8),0(8);
0(4),C{n) O(B),C(B), 1(B) | C(B)=u(I(B).C{B)},0(B))

Figure 5. Scheduling of MBPC
is acceptible because they operate independently with
other PE’s.

— The system controller is selected‘among the PEs, and
it is considered to work just like the other PE’s.

— The master of time slot performs multiple ORed
transfer using the program 1 shown above, so the data
produced from the previous simulation are useful.

- Each PE runs and accesses its own local memory with
no waits.

~ Bach IOP can update all inputs and outputs
sufficiently fast.

—~ Each 68000 CPU runs at the frequency of 8 MHz.

- MBPC is assummed to solve total of 64000 steps of
ladder instructions with 8000 inputs, 8000 outputs,
and 8000 control relays.

- Ladder diagram is identically distributed among the
discrete processors. Nstep shown below is the number

of steps which a discrete processor should solve:

Nstep = Ntotal/Np 1
where Ntotal : total steps of ladder instructions
Np . the number of discrete processor

— With appropriate software, we c¢an distribute the
control relays identically to the discrete
processors, but the output relays to be soclved by
each discrete processor cannot be divided so. Thus
they should transfer all the data which contain the
outputs that are not part of their own, clearing them
as stated in Section 2 and 3. Using ORed transfer,
only the unmasked data are effectively transferred.
The IOP’s can share the input and ocuput data with
equal length. Refer to Figure 5.

- We also assummed that the discrete processors should
service 3 kinds of real time clocks, which occurs
every 1 ms, 10 ms, and 100 ms. The corresponding
service routines have been investigated and the clock
cycles have been calculated. This yields the service
time of each; 144.608, 194.912, and 245.216 clocks.

We can represent E[TSdsp], the mean time of time

slot of each discrete processor, as follows:

EfC1l] = Nc/Np 2a
B{01] = No 2b
E[TSdsp] = ( E[C1] + E[0Ol] )-Tbx

= {( No + N¢/Np )eTbx ——m—— 2¢c

where Nec, No 1 the total number of control

relays and outputs
E{C1],E[01] : the mean number of control relays

and outputs a discrete processor



should transfer
Thx : the mean transfer time of one bit
data through INFOBUS
At local transfer state, a discrete processor has to
transfer all the data in the TPM which has been written
by the other PE’s just previous scanning period into

his own local memory. Thus we can write:

Ef{Tlocal] = ( Ni1 + No + N¢ )« Tbx ———m— 3
where E{Tlocal] the mean time of local transfer
period of a discrate processor
We can divide the input and output relays in a
I0P1 will handle X0-X511, while
Thus each IOP will

localized manner, i.e.

I0P2 will handle X512-X1023, etc.
transfer E[I1] words at its time slot period.

E{TSiop) = E(Il}<Tbx = Ni/NiopeThx ———— 4

where E{TSiop]

Niop : the number of IOP in the system

the mean time of time slot of IOP

Referring to the Fig.5, we can establish some

about the scanning time of discrete
E(Tdsp], the

scanning time of a discrete processor means the time

equations

processor. For each discrete processor,

required to perform the sequence shown in the Fig.5.

E(TSdsp] + E{Tlocal] + E[Tsol] +

= (No+Nc/Np)s+Tbx + (Ni+No+Nc)eTbx

+ E[Tsol] + &

= 2B[TSdsp] + (1-1/Np)s Ne-Tbx + Ni«Tbx

E[Tdsp]

+ BE{Tsol} + &X 5
where E[Tsol] the time required to solve ladder
A : some overhead <ime, such as RIC

service time and waiting time
I1f INFOBUS becomes the bottleneck of the system,
then we can write the scanning time to be E[Tbus].
E[Tbus] =5 E[TSdsp] + Y E{TSiop]
= Np E[TSdsp] + Ni Tbx ———r————— 6
Now we can write down the mean scanning time E{T}],

by combining eq.5 and eq.6.

E{T] = max { E[Tbus], E(Tdsp], E[Tiop] } Ta

where E[Tiop} the scanning time of the IOP

E{Tiop] has been assummed to be sufficiently small
Thus, eq.7a can be reduced to the following eq. Tb:
E{T] = max (E[Tbus], E[Tdspl}
= max {Np E(Tdsp], 2E[TSdsp]+(1-1/Np)+Nc-Tbx
+ E[Tsol}+® ) + Nis»Tbx 7o

How to express the time needed to solve the ladder
instructions? There are no standaerd ways to express
it. So the strategy used in this paper will be
described and formulated.

It is the main objective of PC to solve the ladder
diagram, which includes pure boolean logic and block
type instructions such as counter, timer, drum, shift,
arithmetic operations etc. For this reason, it is
meaningful to express E[Tsol] as the function of the
ratio of block type instructions to the entire ladder

instructions. In addition, the block type instructions

and special block type instructions(SBI). The counters
and timers are included in the BBI which are very
frequently used in most PC applications.

By this strategy, the mean time to solve the ladder

instructions, E[Tsol], can be expressed as follows:

E[Tsol] = E[Tbool]eNstep + (TbbisRbbi
+ Tsbi-Rsbi)s ALti * Nstep ———————— 8
where E{Tbool] : mean execution time per one pure
boolern instruction
Tbbi,Tsbi : me a1 execution of BBI, SBI
Rbti : the ratio of BTI to the Nstep
Rbbi,Rsbi the ratio of BBl and SBI to BTI
To know E[Tboecl], Tbbi, and Tsbi, it is required more
exact data about the hardware and software. It is,
however, difficult to gain such data without existing

system. Fortunately, we can acquire these data from
the project accomplished in our lab to develop the
large capacity PC[16]. The system developed by the
broject, have been configured to include a sytem
controller, I/0 processor and & hardware—logic—solver.
The system controller of the project is very similiar
to the discrete processor in our MBPC, but there are no
INFOBUS interface and TPM. But if we consider the
solving of ladder instructions only, that system is
very realistic model for our discrete processor.

In both cases, HLS are included which can sclve the
pure boolean instructions, but the block type
instructions cannot be solved by HLS. So the block
type interface logic has been designed to pass the
block type instruction to discrete processor. Using
this logic, HLS solves BTI with the aid of discrete
processor.

The HLS can solve the pure beoolean instructions at
the rate of 0.lmsec/Kstep. We can enhance it further,
but 0.lmsec/Kstep will be used as E[Tbhool] in our
simulation.

We have designed softwares which implement the block
type instructions using 68000 assembly languages. We
have studied many routines to implement the block type
instructions, counted the execution cycles needed, and
gotten their mean cycle times in the form of
hypoexponential distribution of order two:

f(t) = ploul-exp(—ulet)+p2-u2- exp(-u2st)

;b 20

g
To muse these data in analytic equations, we
evaluated the mean of them. This vyields 256.7
clks/step for Tbbi, and 210.9  clks/step for Tsbi.
Using them, we can rewrite the egation 8 as follows:
E{Tsol] = { 0.1 + (256.7-Rbbi
+ 210.9+Rsbi)s RbtisTclk}s Nstep ——— 10a
since, Rbbi + Rsbi = 1,
E[Tsol] = { 0.1 + (210.9
+ 45.8¢Rbbi)+Rbti»Tclk}e Nstep

—— 11b

From the simulation, the transition activity diagram

of MBPC has been cbtained and shown in Figure 6. The

can be divided into basic block type instructions{BBI) 867 diagram was taken from the data showing the state



10P1| |

transition of each PE between 1540 msec and 1650 msec.

We can choose any point in the diagram as the
reference. If we choose 1552.5ms,

of time slot of IOPL,

the starting point
as the reference time, the start
so the scanning time
or 0.83

conclude that

of next time slot is at 1605.4ms,
in this case becomes 53ms to complete B4Kstep,
msec/Kstep. From the diagram, we can
of the activities of discrete processors are lie
and IOP's

Also the discrete processors

most
on the state of solving ladder instructions,

are in the waiting state.

are observed to be in wait state so rarely, but at
1550.4 msec the discrete processor 1 completes its
solving state and enters waiting state, because

discrete 3 does not complete its local transfer yet.

Iop2

DisPl

1550

1560 15/0 1580 1590 1600 lGl(_] 1620 1630 1640 1650
waiting Local Solving [ Time (msec)
— Transfer Ladder Slot
Fig.6 The transition activity diagram of MBPC
Figure 7 and 8 show the mean INFOBUS transfer time
per word and the mean TPM access time as the number of
processors increases. It is observed that these
parameters are gradually increasing as the number of
processor increases. We can state that as the number
of processor increases the contentions to access the
INFOBUS and TPM also increase.
The Mean INFOBUS Access Time vs
The Nuinber of Processor
2.1 -
o 1% + 2% © 4%
2.08 - 4 88X x ax . v w0%
; 206
L 204
c
, 202 -
£
Fo2-
H
5 1.98
3 1.96
2
Proes
z
€ 1.82
§%2
2 49
2
Fes
1.86
184 S e sy 1 =
i 2 3 4 5 a
The Nunber og Procesvor
Fig.7 The mean INFOBUS access time (1)
The Mean IFM Access lime vs
The Number of Processor
2.1
o TR+ 2% o 4% l
2084 A §%.X &% v 0%
2.06
$
{204
Y
£12.02 -
£
Eoz4 »»
E 1.98
§ 1.06
z \/
& 1.94 4
§ 1.92 «4
=
‘l 1.9 4
£
1.88 -
1.86 4§
1.84 T T T T T T
1 2 3 4 & 6 7 a 868

The Number of Progassor

Mg

Figure $ and 10 show the same parameters with
changing the ratio of BTI. From these graphs, it is
observed that the change of the rate of BTI doesn’t

have no effects on the parameters relating to the

contention.
The Mean INFOBUS Access Time vs

The Rale of Block instruction (%)

o M=l t Npm2
+-08 - © MNp=4 & Npm6
X Wp=8

The Mean INFSUS Access Time In p—sec

Tl Rate of Block Typa insiruction(%)
Fig.9 The mean INFOBUS access time (2)
The Mean TPM Access Time vs

The Role of Block instnuclion (X)

20
a mp=w Np = 2
2.08 - 1 Npm4 A NpmE
X Np=@
2,06 -
¢
H
t 204 4
a
£ 2.02 4
I
E 24
E
§ 188
H
H
$ 196
3
2 194
3
g 1.82
b3
e 1.9 I
£
£
1.88
1.88
1.84 T T T T T T T T
2 3 4 5 6 7 a 8 0

The Rate of Block Type Instruclion(X)

Fig.10 The mean TPM access time (2)

From Figure 11, it is observed that in most cases

the graphs, representing the mean scanning time versus

the number of processor, follow the function l/n which

means the best case of speed up factor with
multiprocessor[15]. Thus we can conclude that MBPC has
very high parallism, and MBPC has a cost effective

architecture. This can be clarified by the graph shown

in Figure 12, which represents the rate of the change
of scanning time when the number of discrete

at

processor

increases a given Rbti. As the number of discrete

processor increases, the change of scaning time imposed

by the change of Rbti decreases.
The Number Of Processor vs Scan Time

The Mean Sconning Tima ( maac/Kstap }

Tha Number Of Procassor



The Effective Overhead Rate of BT

jo
@
i
>
1

0.2 ~

ffactive Overheod Rt
14
®
s

°
1

Wo12 A
P
£ o
o.08 -
0.06 -
0.04 —
0.02 T T T T T T T
a 1 2 3 4 5 [ ? e
Number Ol Processar
Fig.12 The effective overhead
The Ratio Of BT! vs. Mean Scan Time
3.4
3.2+ o 2% o %
a axl v 10 7%

The Mean Scanning Time ( maec/Kstap )

Q T T T T T T T T T
o 1 2 3 4 s 8 7 L] 9

The Ratio Of BTl in Tha Ladder { % )
Fig.13 The mean scanning time (2)
From Figure 13, we can see that the scaning time is
increasing propotionally to the rate of the block type
instructions.
6. Conclusions
The features that make INFOBUS to be

the multiprocessor based PC’s are described.

suitable for

Since the

interface circuits of INFOBUS including the control
logic for TPM can be implemented using custom Ic
technelogy, INFOBUS can be realized easily and

Using the multiple transfer
the performence of INFOBUS,

relatively small efforts.
and ORed write transfer,
especially the mean transfer time through INFOBUS, is
remarkably enhanced.

We have chosen a working large—scale programmable
And it have

controller(16] our fundamental model.

been modified to become MBPC described throughout the

as

paper. Some useful and important results about MBPC

have been observed from the graphs which have been
obtained from the simulation of our exact MBPC model.
These results are based on the exact model. Using
INFOBUS, MBPC

simple scheduling, so the overhead of scheduling can be

can have a good parallism inspite of

minimized. This is a good property in implementing
multiprocessor architecture.

Moreover, the scan time of MBPC is relatively fast,
although

and simple schedule strategy.

simple distribution strategy of task
In case of TI 580/5865,

and lms/Kstep in case of

it has

the scan time is 2.2ms/Kstep,

Modicon 584.
References

Zakharov, "Parallelism and Array

[1] vasilii

869

Processing," IEEE TOC C-33, No.l, Jan.
[2] Hibert D.
Pool og COntrol
Applications,"” IEEE TOC C-33, No..0, Oct, 1984
{3] J.M.Ayache, J.P.Courtiat, " REBUS, A
Fault-Tolerant Distributed System for Industrial

1984
Kirrmann and Felix Kufmann, "Poolpo — A
for

Processors Process

and M.Diaz,

Real-Time Control’"™ IEEE AC, AC-23, No.6, Dec.
1978
[4] Khalil M. Zahr, "Design Optimization of

Microprocessor Based Remote Multiplexing Systems,"

IEEE AC, AC-23, No.8, Dec. 1978

(5] Lymam F. Brown, "A Hole for  Programmable
Controllers in Factory Distributed Control," IEEE
Tr. on Industry Applications, TA-21, No.4, 1985

[6] M.A.Marsan, G.Balbo, and G.Gonte, "Comparative
Performance Analysis of Single Bus Multiprocessor
Architectures,” IEEE TOC C-31, No.l2, Dec. 1982

(7] Benjamin W. Wah, "A comparative Study of
Distributed Resource Sharing on Multiprocessors,"”
IEEE TOC C-33, No.B, Aug. 1984

[8] Richard S. Brice, J.C.Browne, "Feedback Coupled
Resource Allocation Policies in the

Multiprogramming —Multiprocessor Computer System,"

Comm. of the ACM, Aug. 1878
[9] D.P.Bhandakar,"Analysis of Memory Interference in
Multiprocessors,”" IEEE TOC C-24, No.9, Sep. 1975

{10] M.A.Marsen, "Modeling Bus Contention and Memory

Interference in a Multiprocessor System,” IEEE TOC
C-32, No.12, Dec. 1982

{11] T.Lang, M.Valero and I.Alegre," Bandwidth of
Crossbar and Multiple—Bus Connections for
multiprocessors," IEEE TOC C-31, No. 12, Dec.
1982

[12) Zvi Rosberg,"Process Scheduling in a Computer

System," IEEE TOC C-34, No.7, July 1985

"

{13} Reinhard Manner, Hardware  Task/Processor
Scheduling
TOC C-33, No.7, July 1984

{14} D.G.Kafuraand V.Y.Shen,"Task

System with Indenpendent Memories,"

Yol. 6 Neo.1, 1977

[15] Domenico Ferrari," Computer Systems

Evaluation,” Prentice-Hall, 13978

in a Polyprocessor Environment," IEEE

Scheduling On a
Multiprocessor
SIAM J. of Comput.,
Performance
of

[18] Information System Laboratory, " Development

Large Scale Programmable Controller," Final Report.

{17) Bengt Stavenow and Jan Karlsson,"SDL applied to
Discrete Event Simulation,” SDL Newsletter, No.3,
June. 1982

[18] Bengt Stavenow and Jan Karlsson, " SDL/SIM: A

Simulation System for Discrete Event Simulation,”

Lund Institute of Technology, Lund, Sweden

[19] TI Inc., Texas Instruments Industrial Control
Products, Model 560/565 Product Profile, Texas
Instrument.

[20] GOULD Inc., 584. Microcode Machine Spec., Gould,
Jan. 1980



