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Abstrace:

The payload variation and modeling error can be parameterized in such a way that

known nonlinear functions are multiplied linearly by parameter errors. An adaptive

control algorithm is derived for a perturbed linear system with such parameterization.

Hence, in this approach no linear approximation of robot system is needed for the

application of an adaptive law. The stability of the adaptive control algorithm is esta-

blished and also supported by a computer simulation result.

1. Introduction

Most existing robots move in such a way that they are
instructed to traverse a sequence of points according to the data
which were generated from kinematic equations or teach-and-
replay. In such a manipulation, robots are considered as a con-
nected linkage of servo mechanisms. This concept makes the con-
trol problem easy, but leads to the design of heavy links to satisfy
the assumption accompanied by simplification. A problem with
heavy links is that they necessitate the use of large motors, which,
in turn, drives up the cost of the robots. For this reason, currently
working robots are over-designed compared with performance.
Specifically, they have unacceptably large weight to payload ratio
which is, typically, in the range of 30-50. However, if robots are
built with lightweight links or if they are desired to move fast,
then naive control schemes do not work since the assumptions for
the simple control are no longer valid. Hence, in this respect,

more attention needs to be paid to the dynamics and control of

robots under mild assumptions.

If the links are made with lightweight material, then the
effect of payload on the robot dynamics becomes significant, i.e.,
the dynamics of a robot with a payload will differ significantly from
those without it. The reason is that the dynamic parameters vary
(in a nonlinear way) as payloads vary. The effect of payloads, as
well as some modeling errors can be treated as a parameter pertur-
bation. Hence, for dynamic control of robots, especially light-

weight robots, a compensation algorithm for such a parameter per-

turbation should be provided. A PD-type control scheme, namely,
computed torque method was developed as an attempt to control
robot systems compensating such an error (Bejczy 1974). How-
ever, with computed torque method, it is not possible to eliminate
output error (for example, trajectory error), although output errors

may be o' 2nuated by stable dynamics,

It is very natural to apply the idea of adaptive control to this
problem setting, and the application of adaptive control law to the
robot systems is nothing new (Lee and Chung 1984, Seraji 1987).
However, almost all the papers concerning the adaptive control of
robots are application-oriented, and up to the knowledge of author,
rigorous analysis of adaptive control algorithm for robots has not
appeared. In this paper, we parametrize the variation of payloads
and modeling error without linearizing the system (along trajec-
tory) and develop an adaptive control algorithm following the idea
in (Nam and Arapostathis 1987). We also establish the stability

adaptive control scheme in the perspective of control theory.

This paper consists of as follows: In section 2, a perturbed
linear model is derived so that an adaptive control algorithm is
readily applicable. We develop an adaptive control algorithm in
section 3 and prove its stability in section 4. Finally, we illustrate

the adaptive control scheme with computer a simulation result.

Notations: We denote by C'(R*,R™) the space of r—times con-
tinuously differentiable functions from a positive real line R™* to

R™ and by B(0, p) an open ball of radius p> 0 centered at 0. We
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define f € O(x) if {If (x)/xll > 0 as |Ix]|>0. We let I, be the

nxn identity matrix.

2. Derivation of a perturbed linear system model

Throughout this paper, we consider the following dynamics

of a robot having the n-degree of {reedom:

D(gq)q + C(q,9) + g(g) = T, (2.1

where ge R" is a vector of joint angles and T is a vector of
torques applied to each joint. Here, the matrix D(gq) is called
inertia matrix, C (¢,4) rcpresents Coriolis force plus Coulomb fric-
tion and g is a gravity-dependent vector. From the specifications
of links, D{(q), C{q.4), g(g) can be obtained as functions of ¢
and ¢ .

Together with (2.1), we also consider the forward kinematic

equation:

2= G(q), (2.2)

where z € R™ denotes the position in a fixed task-related Cartesian
coordinates and the map G :R" —R " relates the joint coordinates
with the Cartesian coordinates. For gencral six degree of freedom
manipulator, z contains 3 position components and 3 orientation
components. Here, we consider the system (2.1) and (2.2) in an
open subset O of R” in which D(q) is nonsingular and the map
G :0 -G (0) is invertible.” In other words, we consider the robot
system in a subset where no singular configuration occurs. We
assume that the maps D:R™" 5> R"™* C:R» >R and
g:R™ >R" are smooth and that the map G:0 -G (0) is a
diffeomorphism.

The functions D(q), C(q.q), g(q) are dependent on the
changes of payloads and parameter error and we regard them as
causes of parameter perturbation in D(q), C{q.9), g(q). For this
reason, we assume that the functions D(q), C(q,9), g(q) are
perturbed and as a result, the exact quantities of them are not
known. We denote the ecstimate of perturbed terms D{(q),
C(q.4), 8(¢) by D(q), C(q.9). g(q) and the errors by
AD(q) = D(q) - D(q), 8C(g.4) = C(q.4) ~ C(a.9),
Aglq) = 8(q) — 8(q).

For the state-space representation, we need to invert the

matrix D (g). Consider the following matrix inversion lemma:
D= (D - aD)Y'=D"'+ pD’

where B = D'AD(I -~ D~'AD)"!. Thus, we obtain

It

DNt - C(q.9) - 2(g))
(D71 + BB"H(t = (C +3) + (AC + Ag)).

i

H

(2.3)

* Noticing that G(Q) is usually defined to be a work space, this assump-
tion is, in general, not a restriction.
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Hence, if we choose T = Du + C + £, then (2.3) yields

g=u+Bu+ (D7'+BLHAC + Ag). (2.4)

Note that if BD~'AD is small compared with /, B is approximated
by D™'AD. Hence, for a sufficiently small error AD , the dynamics

can be described by

g=u+ lj(q)’l{AD(q)u +AC(q,9)+ Ag(q)}

+ D(q)T'AD(9)D (9)"(AC(4.9) + Ag(q)).  (2.9)

Note that one can c<00se a parameter vector A€ R™ for
some m > 0 from D(gq), ('(g,¢) and g(p) such that all the possi-
ble modeling errors and payloads variation are reflected as changes
of A. In the following, we separate the functions of q or ¢ from
the parameter vector A. For a matrix D(g)e R™ " which does
not contain elements of A, the matrix D(g) may be represented

as;t

D{(g) = ¥5(g)A + D(q), (2.6)

where Wp(g) € R™™™ is a matrix of known functions of q, und

Ae R™X" is a matrix consisting of A in the following manner:

A0 01‘
0 A .

A= o 2.7
00 lJ

We denote by %e R™ the estimate of unknown vector A. We can

let

D(g) = ¥p(@)A+ D(g) and AD(q)= W5(q)AA,

where A consists of A like (2.7) and AA = A - A. Then,
u AN
U AN .
AD(g)u = ¥p(q) | = |= ¥olq.u)ah, (2.8)
u,,A?L

n
where  Wp(q.u) = 3 ¥ni(q)u, ¥peR™™ denotes the i-th

i=1

block sub-matrix of ¥p, and AA=A- A. Similarly, we let
C(q.9) = ¥e(r+ C(0.0), C(g.9) = Yc(@he + C4.9).

2(q) = ¥o(@)h + §(a). §(q) = ¥ (DA, + 3(q),

where W¢,¥, € R™*™, €. € R*. Then, note that for fixed ¢

AD (@)D (@) (AC(g.¢)+ Ag(g)) € O(AL). (2.9)

Hence, neglecting the terms in (2.9) for small parameter error A,

the system (2.5) reduces to

G=u+ ¥(g,4,u)Ah (2.10)

where

+ For the specific illustration, look at the example in section 5. There
might be a case that D(q) may contain a term in wb%ch a unknown
parameter is multiplied not linearly. For example, the ij-th Flcmcnl of
D(q) may be represented as d,j(q)Zf‘(q)(x+fg(q)al. In this case, we
can obtain the form (2.6) by treating o and o? as distinct parameters.



¥(q.q,u) = DTG ¥p(g.u)+ ¥c(g.9)+ ¥, (g) ).

Ifweletx =[qu...,q,,¢1...,4,1T € R%, then (2.10)

yields

X = Ax + B(u + ¥(x,u)A\), (2.11)

where

01, 28x 20 0
— x n
A=y |eR and B = I, € R¥xn,

We can choose K € R "*?* 5o that the eigenvalues of A + BK have

negative real part. For an external input v:R* >R ™, we let

u(r)y = Kx + v(t) (2.12)

so that the autonomous part is asymptotically stable. Then, we
obtain from (2.11)

%= (A+BK)x + B(v+¥(x,v)AN), (2.13)

where W(x,v) = W(x,Kx+v). Summarizing this section, one

can say that if a torque
=Dk [ZJ+ v)+ .+ 8 (214

is applied to the joints, then the system (2.1) can be described by

the linear perturbed model (2.13).

Remark: Note from (2.13) that the feedback (2.14) realizes a kind
of computed torque method. However, unless ¥(x,v)AA van-
ishes, output error z= G(g) will not vanish, either. Hence,
although computed torque method may help attenuating the effect
of error ¥(x,v)AMA by a stable system, it cannot eliminate the out-
put error completely. In the next section, we will show how to
eliminate the effect of the error with a parameter adaptive algo-

rithm.

3. A Direct Nonlinear Adaptive Control Scheme
In the previous section, we obtain the following equations:

x

"

(A +BK)x + B(v+ ¥(x,v)A¥), 3.1

I

z = G(Cx), (32)

where C = [1,:0] € R****. We will develop a direct nonlinear
adaptive control algorithm for the system (3.1) and (3.2). We let

a linear operator H, be defined by

H(y) = C[ #0098y (1) d1 (3.3)
0

piecewise continmous function Y:R*—>5R". Let

H(s)= C(sI- (A+BK))"'B. From the specific structure of A,

for a

B and C, the following matrices are equivalent in the sense that

they have the same Smith form
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sSI-(A+BK) B
-C 0

S-A B } {12,. 0 }
-c 0 oI, |
Hence, the inverse of H(s), H(s)™' has poles at infinity, i.c.,
H(s)™! does not have poles in the right half plane (Kailath 1980).
Thus, for a uniformly bounded function y(1)e C**(R*,R"),
IIH} ()Ml is bounded, where H,~! denotes the inverse operator of

H,. Choose
v = H UG (r (1)), 34

where r(t)e C*(R*,R") is a desired trajectory for the tip of the

end effector to follow. Then,
Cx(t) = G7l(r(0)) + H(P(x,v)AN) + CeA*Bx(0).(3.5)

Introducing an augmented error,

&) = H(¥(x,v)A ~ H(F(x, ) (3.6)
we express equivalently as
H,(F(x)AM1) = E(1), (3.7

where
8(1) = Cx(1) = G™r (1)) + e(r) - CeU*BEI (), (3.8)
Note that £(¢) is available for all re R *.

We propose the following parameter adaptive law, which is

based on a pseudogradient algorithm,
X =4 = — <t () (H,(F)H, ()T + 80 )" H,(F) AN
= = xH, (W) (H,(PYH,(F)T + 8/ )7 1E(¢) (3.10)

where x is a positive scalar gain and §, is a small positive number.

Let R (1) = (H.(¥YH,(¥)" + 8/)™". Then, utilizing the identity

d, . _
R = ‘RE(R YR, we observe that (3.10) is equivalent to the

following equations:

A= —xH,(F)TR (1)E@)

3.11)
R = —R(O(P) + ®BTHR , R(0)= 51;1 (3.12)
0
Q(F) = C(A+BK)X(OH, (F)T (3.13)
x(t) = (A+BK)x(t) + B¥(x), %(0) = 0. (3.14)

Summarizing section 2 & 3, we obtain the following block

diagram:

v ’

AT e

. B T xalg.q)" ’ z
Du+l+p Dii+€+g-T}__

irgn
LI

Adoptive
Algorithm

Figure 1. Block diagram of an adaptive control scheme for a robot
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4. Proof of Convergence

We summarize the equations of the adaptive algorithm

derived in the previous section:

£=(A+BK)x + B(v+ ¥(x,v)AN) (4.1)
z= G(Cx) (4.2
A= - xH (PR (ED) (43)

R = -R(@(T) + ®(FT)R , R(0)= 'alE’ (4.4)
®(F) = C(A+BK)x()H,(P)T (4.5)
%(1) = (A +BK)x(t) + B¥(x,v), x(0)=0 (4.6)
E(t) = Cx (1) = GTHr (1)) + €(1) - CeU*Px(0) 4.7
e(t) = H(Fx v A~ H (P (x,v)A) (4.8)
v=H(G(r(t) (4.9)

Theorem 4.1: Consider the plant (4.1-2) with the controller (4.3-
4.9). Suppose that the reference input r(t) € C*(R*,R™) is uni-
Then,
Ujyc R™ of A, depending on the bound of {|r(¢)|| such that if

formly bounded. there exists an open neighborhood

AMO) e Us, 11z(t) — r())] > 0 as £ —>o0 .

We need the following technical Lemma for the proof of

theorem 4.1.

Lemma: ForM e R™™ and 3> O,

IMT(MMT +81,)" "< 1.

Proof of Lemma: Utilizing the identity

P, + FP)"1= (I, + PF)"'P ¢ R**™ (4.10)
for Pe R™™ and F € R™*", we obtain

IMT(MMT +8L) 12 = \MT(MMT + 81,) "M

= IMTM +81,) "M TMii< 1. m

Proof: Let V(1) = —zl?Ak(t)TAl(t). Recall the following rela-

tionship

E(1) = H,(P)AR(r) (4.11)

From (4.3) and (4.11),

V()= - ANH.(F)TRH,(F)arh s 0 (4.12)

forall t = 0. Also, since V(¢) 2 0and V(t) < 0, then

V(0) = V()= — j:V dt = j: AN H,(B)YTRH,(F)ANdT <

and hence,

IR “H,(P)AM € LYR™Y). (4.13)

Since from (4.13)

AN < ®H F)TR MR “H (F)AM) (4.18)

and since, by the

Mle LYR™).

previous Lemma, JIH(¥)TR%< 1,

In the following, we prove the uniform boundedness of [53]]
to show that ||H,(¥)AM|| is bounded. With P and W positive

definite matrices satisfying

(A+BK)Y'P + P(A+BKY= - W, (4.15)

we choose V' = e"Pe. We let e(1) = x(r) - ¥(¢), where (1) is

the solution of

%= (A+BK)T + Bv(r), X(0) = x(0). (4.16)
Then, we obtain from (4.1), (4.9), (4.15) and (4.16) that
V= —e"We + 2eTPF(e(1)+ 7, v)AN. (4.17)
Therefore,
Vs ~aullel+ 20, lelP(e+ %, VAN (4.18)

where a,, is the smallest eigenvalue of W and o, is the largest
eigenvalue of P.

Since r(t) is assumed to be bounded, it follows from (4.9)
and (4.16) that v(¢) and X(¢) are also bounded. Since ¥ is a
smooth function of its arguments, there exist positive constants &,

and k5, such that for e € B,(0,p,)c R, some p, > 0,
(FPCe+X, v < kyllell + ko

Thus, fore(t) € B,(0,p,),

V< (2k 10, lIAM] - a)lleli? + 2ka0, 1AMl (4.19)
o, -
Hence, if {JAA|I< , V<0 for ee B,(0,p,). Choose
20,k

Ur=B3(A, ;) c R™, where py =

Oy
. Note from (4.12) that
20,k
AM1tye Uy for all te R*, if £(0) € U,. Since ¢(0)= 0€ B,(0,p,),
if A(0) e U, then e(t) thus, x(¢z) is uniformly bounded. Hence,
the boundedness of II%[}I,(W)AMII also follows from (4.3-8).

Therefore, along with (4.13), it follows that as ¢t —> oo

H . (P)AL - 0. (4.20)
Note that
() = C (A - %), (421
where %(¢) € R "*™ satisfies
%= (A+BK)+ BP(x A 3(0)=0.
Since
Lod-n - A+BOCA-D + . ah-DO=0,
it follows that
£(r) = CJ"e("*”’”(““xid‘r. (4.22)
0
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Since XELZ(R*) and x(¢) is uniformly bounded, £(r) - 0 as
t >, Therefore, it follows from the (4.7) and (4.11) that

Cx(t) > G~ XNr (1)), ie., 2(t) = r(1) since G is one-to-one. M

5. Simulation example
As a simulation example, we consider the following planar 2

degree of freedom manipulator:

Figure 2. A planar 2 degree of freedom manipulator
Li=10=05m, mm;=50Kg, m,=30Kg,
I,=5Kgm? I,=3Kgm?

We let g¢;, L, m;, and I; the joint angle, length, mass, and the
moment of inertia, respectively, of link i; we let 5;(¢) the sine
(cosine) of the joint i variable and cy,, cos(q+¢,). The data in

this example was taken from (Asada 1984).
Neglecting frictions, the dynamic equation is given by

-

Dn Du (g, . —Ymolilas243 — malilasadids
D21 D22 ij; I/Z”lzl]lp_&zq.]2

{(Yomalacy, 2+ Li(Yom i+ ma)cylg
1 ’ (5.1
Yo glac e 28
where
Dy = I+ do+ Y(mylf + mold) + mal? + malilac,,
Dyy= Doy = I+ Ymold + Yamylilac,,
Doy = I+ Yam,l}
The kinematic equation is given by
x licos(q1) + [xcos(g1+ g2
|7 GO = | 1sin(a)) + Lasin(ar+ g2 (3.2)

In this example, we assume that a point mass of 2Kg — whose
actual mass may be unknown — is attached to the open tip of the
link 2. Then, the parameters m, and I, wil change into

#y=32Kg and [,=3.5Kgm? Let A= [I,,m,". Then, we

obtain
I+ Yamqg 0 ~
D(q) = 0 ol €W@.9=0 2@ =0
Uyt My YAyt ug) + Dilyey(uy+ oug) + ugl?
¥olgu) i+ Ug Y2 (utug) + YHlgcqu,

0 ~%d\l2s245~ 1115524142

¥ q) = .
clq.9) 0 Ullasq?
0 (Alyeyatlicy)g
Yol = (0 sty
Hence,
¥(g.q.u) =
Uyt uy Yl Quit o)+ Dilaeo(us+ Vo) + uyd?
s = higsy (4545 +G1d2) + (Mlycraatlic)g
D(q)

Uit uy MF(ureug)+ Yalily(cqurt g2) + Yilae 1, o8

We compare the performance of the adaptive control with that of
non-adaptive one, ie., fixed gain feedback. We use the following

data for the simulation:

-2 0

-2 0
K= [0 2 0 _2], x= 1000, x(O):[_},_g_]T,

r(ty= GoH,([ 2sint, 4cost]7).

Figure.3 & 4 show the the trajectories of the model and the adap-
tive control system, while Figure.5 & 6 show the trajectories the

model and the non-adaptive system. In this simulation, non-

adaptive system uses the same feedback with the adaptive one

except the parameter adaptation algorithm.

dotted line : model trajectory
solid line : system trajectory

0.80

0.60

0.40

0.20

deas lavaa Ayt angglaseglgagyf -

T T T T 1 17
1.00 200 340

time (sec)

Figure 3. The trajectories (x -component ) of
the adaptive system and the model.
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dotted line : model trajectory
solid line : system trajectory

1.00 g™

0.50

0.00

-0.50

~1.00

T T T T T T T

000 100 200  3.00

time (sec)

Figure 4. The trajectories (y-component ) of
the adaptive system and the model.

dotted line : model trajectory
solid line : system trajectory

0.75
0.50

0.25

0.00

Aot das s bt laagglgaaal

T T T T
00 4.00 5.00

time (sec)

-0.25 Fr—rrrror
.00

Figure 5. The trajectories (x -component ) of
the non-adaptive system and the model.

dotted line : model trajectory
solid line : system trajectory

1.00 3"
\ - —_ T
0.50
0.00
-0.50
-1.00
T T T T T T T T T T T T T T T T
0.00 1.00 2.00 3.00 4.00 5.00
time (sec)

Figure 6. The trajectories (y-component ) of
the non-adaptive system and the model.
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6. Conclusion

We parametrize the variation of payloads and modeling error
in robot dynamic equation and develop an adaptive control algo-
rithm. In this approach, we do not linearize the system along tra-
jectory for the application of adaptive algorithm so that it becomes
possible to solve both the trajectory planning and the parameter
adaptation in an integrated way. Hence, the methodology used
here for deriving adaptive .ontrol algorithm locks somewhat
unified. If the adaptation algorithm is switched off, then the whole
control scheme turns cut 1o be a sort of computed-torque
methods. This idea may be implemented practically with the
advent of cheap but high performance computer. For applications,
the study of robustness with respect to the sampling needs to be

extended.
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