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ABSTRACT

In this paper, we investigate an infinite imp니se 

response (HR) adaptive digital filter (ADF) based on the 

nonlinear least-squares (NLS) algorithm, and compare its 

convergence speed to that of a self-orthogonalizing HR 

ADF which is known to have fastest convergence. By simu

lation, it is shown that the NLS HR ADF converges faster 

than other known IIR ADF's, especi시ly for a low-order case.

I. INTRODUCTION

Recently, IIR ADF has attracted considerable attention 

of many researchers because of its several inherent advan

tages over the finite impulse response (FIR) ADF [l]-[4]. 

An IIR filter can have a smaller number of coefficients than 

an FIR filter for the same performance, and it usually 

mat다les physical systems well. However, the IIR ADF 이so 

has disadvantages, such as the instability problem and the 

possible local minimization problem with a filter of reduced 

order [1]. Another disadvantage is that in general it is 

known to converge slower than the FIR ADF.

In tliis paper, we study an NLS IIR ADF that can 

speed up the convergence rate. We also compare its conver

gence speed to that of the recursive Gauss-Newton (RGN) 

IIR ADF which is of a self-orthogonalizing type [3].

II. NONLINEAR LEAST-SQUARES IIR ADF

Here we first consider the output error for the IIR 

ADF shown in Fig.l. Let J(n) be the desired signal defined
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그■림 1 시스템 인식을 위한 무한웅답 적웅 여파기

Fig. 1 Adaptive filter for system identification

by

d(n) t «(n) + w(h) (1)

where u(«) is the system output driven by zero-mean white 

Gaussian noise (WGN) input ;c(n), and w(/i) is the distur* 

bance representing the measurement error which is also an 

additive WGN. The a priori output estimate y (n) of d (n) 

is then given by

N M
y(«) = ZaQTW 어 T) + S bj(n-l)x (n -j)

i =1 J=0

=0(»-l)r<!>(n) (2)

where {y (•)} are a posteriori output estimates which will be 

defined later, and {%(•)} and 饱()} are coefficients of IIR 

ADF. In (2), the coefficient and information vectors are 

defined, respectively, by
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9(/1-1) 2 [a/n-l), o2(n-l), .. , av(« ~1)； 

b0(n-l), .. , bM(n ~l)]r (3)

(K«) t [> (h-1), y(n-2), .. , y(n -N);

x(h), x (n -1), -- , x (n -M )]T (4)

where T denotes transpose. Consequently, the a priori output 

error is given by

e(«) = </(«)->•(/:) - (5)

To update the coefficient vector, we use a modified 

form of the NLS algorithm [4] as the following:

0(h) = 0(zi -1) + P (n )4<(h )[^ («)*~y («)] (6)
where

n/ . 1 r _ ,..尸(”T)V血)
P(Zl) = _[ ------------------ - -------------------------

X X + i|j(n YP(n —l)i|»(n )

and P(0) is an (N+M+l) by (N+M+l) identity matrix. In 

(7), X. is a weighting factor and the gradient vector 4»(n) is 

given approximately by

屮(Q - [yf(n~l), yZ(n-2), .. , yf (n -N);

"어), /어—M)卩 (8)

where

N
xf(n) t x(n) + Sa,(«-l)xZ(n-i) (9)

1=1
N

(n ) = y (« ) + (n-l)/ (n-Z) (10)
i = l

y («) i o(Q’<bS) - (11)

It is noted that y (n) is a posteriori output estimate because 

it depends on 0(n). In the next section we will show and dis

cuss simulation results.

HI. SIMULATION RESULTS AND DISCUSSION

First, as a low-order case, we investigate a system 

whose transfer function is given by

G(z) = ---------- ----------- — - (12)
1 — 1.2z +0.6z

In simulation, the constant K is chosen such that the system 

output has unity power. For measurement noise w(n), we use 

WGN with power of 0.001. It is assumed that the order of 

the system is known a priori (ie, N=2 and M=0). In Fig.2, 

we compare the mean-square a priori output errors (MSE's)

그림 2 극첩이 두개인 무한웅답 적응여파기의 수혐톡성 

(앙상블 평균을 위하여 독립적으로 500번 수햄하였음)

Fig. 2 MSE of HR ADF with 2 poles (500 independent 

iterations were done for an ensemble average)

(a) NLS IIR ADF with X = 0.95

(b) Modified RGN IIR ADF with a == 0.05

of the proposed NLS IIR ADF and the modified RGN IIR 

AD마 suggested by Shynk and Gooch [3]. As shown in the 

figure, the NLS IIR ADF converges faster than the RGN 

HR ADF for which the optimum convergence factor a was 

chosen by trial and error to be 0.05.

It is known that, when the least mean squares (LMS) 

or self-orthogonalizing type algorithm is used for an IIR 

ADF, the optimum convergence factor is chosen heuristic죠Hy 

in order for the filter to converge fast to the minimum 

steady state error. But, the learning speed of the proposed 

NLS IIR ADF is not sensitive to the value of the weight ing 

factor X in the practical range of minimum and maximum 

values (ie, 0.9 - 1). In other words, X may be chosen 

arbitrarily (e.g., 0.95) for the low-order case. It may be 

worthwliile to mention that, according to our experiment, 

while the NLS IIR ADF converged within 100 data samples 

for the system studied, the well-known LMS type IIR ADF 

required about 1500 samples to converge [2].

For a fair comparison we use a slightly modified RGN IIR ADF 
composed of only one subfilter with two poles.
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We now consider the performance of the NLS HR 

ADF for a liigh-order case which may be regarded as a gen

eralized HR ADF that mod이s an arbitrary finite number of 

poles and zeros. One may note that, when a filter has more 

than two poles, the instability problem can become an impor

tant issue. To overcome such a problem, the high-order 

filter can be decomposed into parallel low-order subfillers 

using discrete Fourier transform (DFT) [3]. As 굔 high-order 

case, vve investigate a system whose transfer function is given 

by

r K(E T)(1 + 1.41广】+广2)_______

“ (l-1.56z-1+0.81z-2)(1-0.98z-1+0.96z ^2)

(13)

where K is chosen such that the system output has unity 

power. Taking an 8-point DEF of input signal and decom

posing the NLS HR ADF into 8 frequency-bin subfiltcrs (each 

of them has one pole and one zero), wc obtained the a priori 

output estimate by summing the outputs of those s니)filters. 

In Fig.3, the MSE is shown together with that of the 
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frequency-domain RGN HR ADF [3] under the same initial 

conditions (i.c., zero initial coefficient vectors). The stability 

of the two IIR ADF's was maintained by monitoring the 

poles of those subfilters. As seen in this figure, the learning 

speed of the NLS IIR ADF is slightly faster than 사lat of the 

frequency-domain RGN IIR ADF, although the two ADF's 

have similar computational complexities. But, for a high- 

order system which has poles near the unit circle, such as the 

one being studied, the convergence speed of the NLS IIR 

ADF turned out to be sensitive to the weighting fa아or.
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NUMBER OF ADAPTATIONS

그림 3 극점이 두개이고 영접이 세개인 무한응답 적웅 

여파기의 수렴뜩성 (앙상블 평균을 위하여 독립적으로 

100번 수행하였음)

Fig. 3 MSE of IIR ADF with 4 poles and 3 zeros (100 in

dependent iterations were done for an ensemble 가ver- 

age)

(a) NLS IIR ADF with X = 0.992

(b) Frequency-domain RGN IIR ADF with 

a = 0.008 (result of [3])
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