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Computation of Induced current distribution
on Straight wire configurations by Method of Moments

[
Byoung Moon Kim , Che Young Kim , Hyon Son
Dept. of Electronic Kng. KYUNGPOOK UNIVERSITY

AHSTRACT : The method ol moments
thin-wire antenna with juntions. By applying
the matrix methods to Pocklinglon's integral
equation  the induced «current and the input
impedance of a thin-wire antenna are investigated
Treatments for wire junctions and incident plane
waves are out-lined. Examples are include here
for wire antenna with reactnce-compensating
element. and wire scatterer with junctions.

is applied to a

I. Introduction

Many authors have been assumed uniform or
sinusoidal current distributions on wire antennas,
Bvidently resultant field values are influenced
by the assumed current distribulions. However,
with the aid of high speed computers, the current
distribution can be determined more exactly
without too much exhaust in analytical setup by a
tformulation based on Pocklington's equation.

In this report an approximate technique based
on Lhe integral formulation for thin-wire with
junction is presented. The input impedance of
wire antennas with reactance-compensating element
and the currenl induced in a thip wire by
obliquely incident plane wave are illustiraled
by employing the proposed numerical techniques to
these wire structures. Illustrative compulations
are restricted to the each wire radius(a) Jess
than both the wire lenglh(L)and the wavelength())
under considerat ions,

I1. Formulation of the problem

1.Integral equation and method of moments!?’

An electric field E is impressed to a wire shown
in Fig.1. We consider the scattering field E* in
terms of scalar and vector potentials. For the
present problem these two potentials are given by

E'= -jwh -%é (1-1)

& =sfrantsee, e (1-2)

¢ =(lge)|[ar )/ e ehar 8
I

where G(r,r')=EXP(~jkR)/4*R and R =,ﬁr’+ ry 1 &
i

,A' are unit vectors lying along the wire at the

observation point r and souirce point p’respectisely

By assuming that currents are zero at the wire
ends, we can obtain  Pocklington’s equetion in
terms of an electric current source.
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Fig.l. Coordinate for an arbitrary thin wire.
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Since the wire is assumed perfectly conducting

E = -E™ (3
or

L(I) = -B= (4)
where

L=/ ft-f dpe i iow e, @)

The current induced in a known impressed eiectric
field can be obtained by solving the inhomogeneous
equation (4).

Triangle functions are employed as & current
expansion function as well ss a testing function,
which is known as Galerkin's method. Defining the
inner product

<W,L(I)>=1*L(1)dl (6)
43
the curpent on I is expanded as
et
Izz InJn (7)
[32)
where J,=T(1-1,) and In is expansion coefficients
to he deterrined, Trianpie functions T(1-1n) are
approximated by four rulse gsteps Sa(i) as showr
in Fig.2. We take the symmetric inner product of
(7) with each testing functions{Wm,m=1,2,...,N-1}
In W, L(Jn ) >=<We , ~E (8)
Tieer get of equations can be written in matrix
form as [Zmn][Inl=[Vm]. The element of [V.] are

given by



.3 .
W= - Esa(i) [ R
whereas the element of [Zmn] are

T = (1/ jew)E & sn(j)s,u)“ -
HYE o

¥G(r,r*)dldl’ (10)
T(u—ln)
b
Sva)l
$n(a)
Snml
Srva.
e
Fig.2 Triangle function (solid) and
four pulse approximation(dash).
Given a set of voltages the current matrix can be

obtained by inverting [Zmn]. For the mosi purposes
it is sufficiently accurate to treat the test

current on Ala ag if it were a point source, and
use . .
Vo = _Igs,(j) AUL EF (11)
-
¥ . & . N
Zmn :(I/JGW)§§ Sa(i)Sm(,j) AU
(12)

_dd ., "yl
x L_ 45w 1160, e)al

where AUL= (L.ila)/2.

2. Incident plane wave?

The propasgation vector K, which lies in YZ-plane,
subtends an angle with the positive Z-axis and
the electric vector E is at angle with respect
to the YZ-plane as shown in Fig.3. The component
of the field =along the vertical wire and the
horizontal wire are

E®{(z)=E*(0)COS (¥)SIN( 8)EXP( jkzCOS(08))
ET(2)=E™(0)SIN(¥)EXP( jkzCOS(6))
where E™(0) is the incident electric field at the
origin coodinate.

Wire junction?‘

3.
As a method of treating wire junctions, the idea
of one wire overlapping another at a juction is
introduced. For this concept, the current at the
wire end which is the end of the overlap is zero
while the current at the point where the junction
was is not zero.
Suppose M wires meet at some junction, then KCL
is satisfied by overlapping wire i by two segments

on to wire 1i-1, except that wire 1 is not
overlapped on to wire N. THat the number of
overlaps is M-1 rather than M is required to

insure on
This method

idependent set of expansion functions.
is shown in Fig.4 for three wires.
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Fig.3. Definitions for incident plane waves.

Wirel

Fig.4 Junction treatment(basis functions
shown dashed).

I11. Results

consider wire with
The equivalent

As a wire antenna problem
reactance—compensating element.
source of the centerfed antenna is magnetic frill
generatorskbr a 1-volt excitation, Fig.5 show the
input impedance for antenna as a function h where
(h+1)=32/4. These data compare favorably with
results obtained by Simpsnrp&hen converted to the
equivalent half space problem. Fig.6 shows input
impedance for an antenna as a function of hy where
(hy+hy)=4/56. By choosing its length ! and height
h appropriately it may be possible to compensate
the antenna reactance.
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Fig.5. Impedance of symmetrical inverted
L antenna, (h+1)=)A/4,



T T T T r

7o) S——,-Y
——X —* J

>
-
—
—
—®
e b ® 4
ot

obns

L 1 T
d Tk
3 /_/ 120 _‘.?
3 7 a=0.,004 N A {
e h=0.2) [
s 1=0.08\ 1 f

hzl/ A 0:2
Fig.6. Impedance of antenna with reactance-
compensating wires, hy;+ hy=\/5.

As a wire scatterer problem consider a equilength
wire-cross and a receiving antenna, i.e., wire
antenna with a reactance-compensating wire. As
shown in Fig.7, when =90, the horizontal wire
exist in the neutral plane to the vertical wire
and vice versa. the vertical wire and the
horizontal wire behave as if isolated, and also
at the junction [I{x) + I(z)]"* is constant. Fig.7
and Fig.8 show that wire currents induced by an
incident plane wave at an angle (§,¥%) satisfy
exactly KCL at the junctions. When# =90° they show
the familiar distribution of forced currents.

e h —i

(10,90)
e (30.45)

B3 6T Gy BOmav h ° h

Fig.7 Currents on the equilength crossed antenna.
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Fjg.B Currents on the receiving antenna, i.e. ,
antenna with reactance-compensating antenna.

IV. Conclusion

In this work & numerical approach has been
presented, based on method of moments and
Pocklington’s equation, to thin wire antenna with
Junctions. Numerical results are obtained for the
input impedance of the wire antenna with reactance
~compensating element and the currents on the wire
scatterer by obliguely incident plane wave.
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