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ABSTRACT

A geuneral scheme is developed which determines the lLagrangian motions of
water particles by the Eulerian velocity at their mean positions by use of
Taylor's theorem. Utilizing the Stokes finite-amplitude wave theory, the mass
transport velocity which includes the effects of higher-order wave components is
determined. The fifth-order theory predicts the mass transport velocity less
than that given by the cxisting second-order theory over the whole depth.
Limited experimental data for changes in wave celerity in closed wave Ilumes
are compared witn the theoretical predictions.
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1 INTRODUCTION

In general, the mass transport velocity of a [luid particle under propres-
sive waves is a linear sum of two quantities known as the Stokes drift and the
mean Eulerian streaming. (1,5) Stokes drift is a general consequence of the
irrotational motion of the fluid while the mean Eulerian streaming arises due to
the viscosity in a fluid bounded by a free surface and solid boundaries. For
the stokes drift, theoretical expressions have been derived using inviscid wave
theories. The magnitude of this drift is first given by Stokes(8) as

- ”2 wk ,
u = . cosh 2k (hty) (1)
8 sinh “kh

in which u, is the mass transport velocity in the Lagrangian refercnce frame; N,
), and k are the wave height, the wave frequency, and the wave number, respec-—
tively. Skjelbreia (6) investigated the Lagrangian motion of water particles for
Stokes' third-order waves. Up to third-order, the Lagrangian mass transport
velocity is still given by kq. (1) with 4a’(a = first-order wave amplitude)
instead of H . Dalymple (2) calculated numerically the mass transport velocity
in an Eulerian reference frame by using the Stream-function thcory prescented by
Dean (3). These inviscid theories for mass transport may be applicd with fair
accuracy in deep water during a time not long after the onset of wave motion
in which the viscous effects are negligible in core flow of the fluid outside
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the boundary laycer. The existing mass transport theories account only for the
first-harmonic linear component of wave motion, and an extention is necessary in
order Lo include the effects of nonlinearitics.

2 MATHEMATICAL FORMULAT1ON

Consider a particle initially loacated at point P(x ,y ) at t=0 in Fig. 1,
and examine the particle over one wave period. It is assuméd that the coordinate
of the mcan particle position,(x,y), is stationary over one wave pcriod. The
coordinate (%,;) represent the particle displacements with respect to the mean
particle position. Let u (x ,y ,t') and v, (x ,y ,t') represent the horizontal
and vertical component of the Lagrangian ve€locity of the particle at time t'.

Let the Lagrangian and Eulerian velocity vectors of the water particles be
denoted by ﬁl and U, respectively, i.e.,
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Fig. 1 Definition Sketch: Lagrangian Motion of a Water
Particle under Progressive Wave of Finite Amplitude

The Lagrangian velocity of the particle, GL’ may be related to the Eulerian
velocity, ﬁ, by
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= f 1 1 + - 0 ] .
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Using the relationships, xo = X + %o and yo = y

-t -t -t t
fo=f L ' o= + v ] /
3 oot t uLdt J uLdt , =0 t det I det , (4)

%o, and noting that

(¢]

the Lagrangian velocity of the water particle is related to the Eulerian velocity
at the mean poition by

> _ = t v " t v 1 (5)
uL(xo,yo,t) = u(x + [ uL(xo,yo,t yde', v+ S vL(xo,yO,t Yde', t)

in which ¢ up{x ,y ,t')dt' and ity (x ,y ,t')dt' represent the inteprals
evaluated at Cime t), since the values of the integrals evaluated at time O arve
canceled by ¢ and § , respectively,in g, (4).

By Taylor's thgorem, the right hand side of liq.(5) may he expanded aboul the
mean position (x,y) according to

n

L I Jnd(;,;’L) L n-t
N < 1 '
s uL(xo,yo,L )de’'] .

>
UL(Ao’yo’t) T nto EQU (n=9)10t an—ﬁayl (6
t Y
[f vL(xo,yU,t')dt']'
In Eq. (6), the Lagrangian velocity components uL(x .Y St') and vL(xa,yO,t') are
unknown, and can be related to the Eulerian veloCity components at the mean
position according to Eq. (b) with t and t' replaced by t' and t", respectively.
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Similarvly, the Lagrangian velocity componcnts in Lhe ripht haod side of the
resulting equation may be further related to the Bulerian velocity components at
Lhe mean position, By substituting the resulling expressions for the Lagrangian
velocity components into kq.(6) suvccessively, the Lagrangian velocity of the
water particle may be related solely to the Eulerian velocity at the mean
position to the desired accuracy.

The mass transport velocity may be defined by

~ 1 T - 1 A
== f = =
u T b uLdt, 1 T 6 det (7)
in which 1 = 2n/w being the wave period.

3 MASS TRANSPORT VELOCITY UNDER STOKES WAVES

For Stokes waves, the Eulerian horizontal and vertical velocity, u and v,
are given by

K K
u=C nél ats V= C nél nv (8)
in which K is the order of Stokes wave theory being considered, and C = celerity

of the wave represented by the Kth-order wave theory. The horizontal velocity
components take the form

u = F. cosh ks cosf , u = F, cosh Z2ks cos26

1 1 2 2
qu = F13cosh ks cosf® + F3 cosh 3ks cos38 ©
49 = qu cosh 2ks cosif + FA cosh 4ks cos40

gu = F15 cosh ks cosf + FJS cosh 3ks cos30 + F5 cosh 5ks cos59
correct to fifth-order. The vertical velocity components take the same form
with cosh( ) and cos( ) replaced by sinh( ) and sin( ), respectively. In
Eqs.(9), 8 = kx ~wt, s =y + h, and k is the wave number.

The Lagrangian horizontal and vertical velocity under Kth-order wave, up and
v],, are also assumed to be given by
K K

u = C nél CTRE N C nél nVvL 10)
After the Lagrangian velocity components in Eq.(6) are expressed by the Fulerian
velocity components by successive expansions, the FEulerian velocity components
given by kq. (#) are substituted into Eq. (0). By retaining the terms up to Kthe
order in Eq. (6), the Lagrangian velocity under a Kth_order Stokes wave may be
expressed entirely by the Lulerian quantities. When this procedure is carried
out for Stokes wave theory at the different orders, the number of terms in the
Eulerian quantity increase rapidly with order. The equations for lagrangian
velocity contain 4 terms for a Stokes second-order wave, and successively 16,
64, and finally 292 terms for a Stokes fifth-order wave.

Second-Urder Theory

In the Stokes second-order wave theory, the wave height U = Za, and the
wave celerity is given by C = C_ tanh kh,»C = g/w being the decep water lincar
wave celerity. The Lagrangian vglocity, u of the water particle is approxi-
mated by the Eulerian velocity, u, accordiiig to
-> oo 7 > > b ' > (L f
) L(lu + U +u 1udt + LU J 1vdt ) L)

> >

Substitution of Egs. (9) for U and L, into Eq.(Ll1) and integration according to
Eq.(4) yields,



H 1k 3

&= - Zsinh kh cosh ks sin0 - lbsinhkka (2shﬂﬁﬁ]1 coshZks-1)sin2li + (12a)
ey _Www -
dsinhfkh coshZks
and
¢ = o Ginhks cosd + =K (in12KE cos2D 12b
Jsinb kh 32sinh"kh s cos (12b)

The components of the mass transport velocity for the Stokes seccond-order
wave given by Eqs.(7) is

. 2
G, /c, - (1ik)

o Asinh2kh coshZks ()

It can be rcadily shown that Eq.(l4) is identical with Eq.(l) which was initially
reported by Stokes(¥).

Third-Order Theory

After collecting the terms up to third-order in Eq.(6), integration yicelds
the horizontal and vertical displacements of the water particles from their mean
positions, £ and ¢, as

ol F

- L 1 - 1 - - -
£ = - Q [(Fl + Fig - §—)'coshks + g—(3Fl + lOFz) cosh3ks] sin0
1 . -
AL L s = =] sin2l
2k[l’2 cosh 2k 5 ] sin20
P (15a)
RS - - -
5% LZ—(Fl 5F2) coshks + Fy cosh3ks ] sin30
ct . o1 ™ - oy
+ 5" Pl (coshZks - F2 coshks . cosh2ks . cosD )
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¢ =L@, +r -2 Fsinnks +—Fi (F2 + 6F_) sinh3ks] cos{
kK "Y1 i3 T8 ) 1 2’ St si ¢
+-7E F2 sinh2ks cos20
1 - 3 _ _ (15b)
+~3§ [F3 sinh3ks - i FlF251nks] cos30
—% Fi sinhks . cosh2ks . sind

The third-order Lagrangian velocity has been reported by Skjelbreia (6) by
use of the Taylor series expansion scheme in a different manner. He substituted
x + £ for z and s + T for s in Egs.(Y) and expanded. The expressions for
horizontal and vertical particle positions, § and ;, are found by successive
approximations. Equations(l5) are identical to the expressions reported by
Skjelbreia(6) provided that his expression 3F? in sin20 term in Eq. (Lb5a) is
changed into 3F’. This scems to be a typogrpahical error, for the term in
question sheould be a quantity of 0(c?). In addition, Skjelbreia(6) included F13
into his expression for F,, which is mathematically inconsistent, because Fljis
a quantity of(‘(Vj) while ¥, should be of O0( €).

The components of the mass transport velocity for a Stokes wave at third-
order according to the delinition given by kgs.(7) is determined to be

_ , F] _ T B _ _
uL/CO= (1 4+ Cl) tanhkh [E~ cosh2ks -'Z‘(coshks + cosh3ks) coskxl] (1oa)

and
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l" ]
S e, =+ c‘cl)canhknlzi(sinth - sinh3ks)sinkx) (16b)

For the present study, the fifth-~order Stokes wave theory presented by
Skjelbreia and Hendrickson (7) is utilized., The coefficrents in Eqs.(9) are
related with tiiose givgn by Skjelbreia and Herdirickson(7) ,¢ = ¢ All’

= 92 3 _ 4 _ y
F2 =287 Aypo 3 = 3¢’ As;’ F13 =BT Ay Fymhe A Tyt 2k Aoy
F = 3¢® A,.. Nishimura et. al. (9) pointed out a
m1nor mistaa in the expression for thée fourth-order celeritg in the solution
given by Skjelbreia and Hendrickson (7) {the sign of + 2592 C® in the expression
of C, should be changed into -2592 ¢%. This correction was accounted for in
calculating the wave number, k, and the perturbation parameter, €, in the present
study. In Eqs.(16), C, = (8 cosh"kh - 8 cosh®kh + 9)/8sinh"kh as given by

Skjelbreia and Hendrickson (7).

Equations(16) indicate that the mass transport velocity has a componeont of
0(e?) which is dependent on x and that the vertical mass transport velocity is
nonzero at third-or higher-orders. However, the second term in Eq. (l6a) as
well as the vertical mass transport velocity tend to average to zero as a water
particle travels over a distance equal to one wavelength, so that the long-term

mass transport velocity reduces to
F2

3 = 2 L 3 (17)
uL/C0 (1L + ¢ Cl)tanhkh 2 cosh2ks

Fourth-Order Theory

According to Egqs. (6)-(8), the components of the mass transport velocity
for the fourth-order Stokes wave are determined as follows:

- 3
uL/ o = (1l +¢ Cl)tanhkh{jllFl(BF F,) - F,(5F] + 10F,F, - 32F

- 16Fl)cosh2ks + (4Fl + 31F1F2 + 16Fi) coshdks ]

3
Fl 1 (l\)a)
e - = 7 _ Lip2p2 _ ept -
- (coshks + cosh3ks) coskx 3Z[Fl(r‘1 + 8F2) 6rlcosh2ks

2 2 - =
- F (F] 4 8F2)cosh4ks]c052kx}

and
FJ
GL/Co = (1 + azcl)tanhkh{zl(sinhis - sinh3ks) -+ sinkx
I‘? (lhh)
(F + BF )sinhaks -+ sin2kx

The terms dependent on X in Eqs. (18) tend to average to zero as a water
particle travels over a distance equal to one wavelength, so that the long-term
mass transport velocity may be given by

uL/Lo = (1L + ¢ Cl)tanhkh{32[F1(3Fl F,) Fl(SFl + 10F,F, 32rlj
(%)

—16Fl)cosh2k§ + (4F + 31F1F2 + 16F§)cosh4k§]}



Fifth-Order Theory

Due to space limitations, the expressions for displacements of water parti-
cles from their mean positions, £ and C, as well as the full expressions for the

mass transport velocity, u, and v, are not given here, After the terms depen-

dent on x in the mass transport velocity components are eliminated, the long-
term mass transport velocity has only the horizontal component given by

= e = 2, 4 Aornz a2 _ 3 _
uL/c0 (F +¢ C, +e C,)tanhkh {32 (F{ (3F-F,) - F,(SF, + 10F,F, - 32F . 20)

- 4 2 2 -
16F Jcosh2ks + (4F] + 31F(F, + 16F2)cosh4ks1}

in which C, = (3840 cosh'®h - 4076 cosh!®kh - 2592 cosh®kh - 1008 cosh®kh
+ 5944 cosh“kh -1830 cosh'?kh + 147)/{512 sinh!’kh(6cosh®kh-1)}

as given by Skjelbrea and Hendrickson(7).

The orbital motion of the fluid particles whose mean position is located
under the wave crest(kx = 0) at time t = 0 is shown in Figure 2 at the mean
depths s/h=l.0(near the free surface for waves with H/L = .0625 and h/L = .20
[Case7~B in Dean (3)]. The solid lines represent the orbital motion cogputed
by the Stokes wave theory utilizing the fourth-order Runge-Kutta method of step-
wise integration. The dotted lines represent the orbital motions predicted by
the expressions for water particle displacements (£ and {)obtained in the study.

The orbital motion predicted by Eqs.(l12) has the horizontal mass transport
velocity much greater than the computed values for second-order theory. For
third~ and fifth-order theory, the predicted orbital motions are close to the
computed motions. The agreement between the predicted and computed motions
improves with increasing vertical distance from the free-surface. The disagree-
ment near the free-surface is due to the large displacement of the water
particles from their mean positions which yields a relatively poor approximation

by Taylor's theorem.

e

e ¢15)

(s) Stowes Secod-Order Theory [t} Stokes Third-Order Theory {c) Sickes Firn-Order Theory

Figure 2. Comparison Between the Predicted and the Computed Orbital
Motion of a Water Particle About Its Mean_Position at Two
Depths H H/Lo = 0.625, h/Lo = ,20, kx = 0.
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The average (or long-term) horizontal mass transport velocity profiles over depth
are plotted in Figure 3 for the three wave conditions,
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Figure 3. Langrangian Mass Transport Velocity Profiles Over Depth
for Stokes Waves. :

4 MASS TRANSPORT EFFECTS IN CLOSED WAVE FLUMES

In closed wave flumes such as laboratory channels, the mass flux transported

by the waves must be balanced by the mass flux carried by the return flow when
a steady-state condition is established. 1In an inviscid fluid, it may be assumed
that this return flow is uniform over depth so that its magnitude, Rc’ is
determined by
1 0 -
= - = (21
Re BTy w0y )
in which u, (y) is the Lagrangian mass transport velocity as determined in the
previous séction. As a result, the wave celerity and angular frequency measured
by a fixed observer differ from their values in still water, while the wave
number (wavelength) is unchanged. The observed (or apparent) wave frequency, O,
is related to the wavemaker (intrinsic) frequency, w, by

0 = wt ch (22)
Accordingly, the observed (or apparent) wave celerity of the main wave in a

closed wave flume, Cc’ is given by
LC= C+ RC 23)
in which C = w/k is the wave celerity of the Stokes wave in still water.

Iwagaki and Yamaguchi (4) obtained some experimental results of wave celeri-
ty in a closed wave flume. Figure 4 shows the comparison between the theoretical
values and their experimental results. In Figure 4, the notations S5-0 and $5-C
represent the Stokes fifth-order theory of Skjelbreia and Hendrickson (7) for
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Figure 4,
Celerity; Data from lwagaki and Yamuguchi(4),
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open and closed wave flume conditions, respectively. The notations $2-0 and S2-C
represent the Stokes second-order theory applied in the open and closcd wave
flume condition, respectively, in which wave celerity in the open flume condition
is independent of wave height. The measured data show good agreement with the
present fifth-order theory which includes the effect of the second-harmanic
Stokes wave component in closed laboratory channels,

5 CONCLUSIONS

The existing inviscid theories for mass transport have been extended by use
of Taylor's theorem to include higher-harmonic wave components. According to
this new mass transport theory, the effects of higher-harmonic wave components
in the Stokes waves on the mass transport for both closed and open flume condi-
tions have been examined. In the third-or higher-order approximation for the
Lagrangian motion of water particles, the mass transport velocity over one wave
cycle is dependent on the initial position of water particles. The decrease in
the surface drift velocity (u, at y = 0) due to the existence of the return flow
in a closed wave flume is as karge as 20% of the magnitude in an open flume for
waves with H/L =0.14 at 0.3<h/L <0.5. Experimental data for changes in wave
celerity show good agreement wih the theoretical predictions in the study.
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