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This work deals with fast-to-compute alphal control laws for time-optimal motion of
strongly nonlinear dunamic sustems like revolute robots, The theory of oeli-to-cell
mappinas for dunamicz]l systems offer the possibility of doing the vast majority of the
contral law computation offline in case of time optimization with constrained inﬁu’(z

Trhese cells

result from a coarse discretization of likely swaths of state space into
of nonuniform, contiguous volumes of relatively simple shapes.

Onee the cells hmfu been

decioned, the bang-bana schedules for the Inputs are determined for all likely starting

cells and terminating oells

The problem of
because
industrial robot constitute a set of highly nonlinear

robot control is very complex
the equations of motion of a tupical

and coupled, second-order ordinarg  differential
sguations. in general, irwerse soluticns of the
complete eguations of motion for use in feedback
corirol laws consume too much computer time to be
used for real-time regulation.

Several irwestigators have based computationally
fact control laws on radically simplified equations of
motion. FPaul [Paul 771 neglected all Corinlis and
certrifuaal forces in the exact rigid-body model
hich greatly simplifizs the sguations of motion. Lubh,
Waiker and Faul [luh 203 peoint out that this
simplification may be justified during  low-speed
approach o the desired terminal state, but the
resulting control law still may be ioco siow for
gereral on-line use. Moreover, this is an extreme
simplification, undesirable in asneral and
imapplicable to rapid, global motions.  Unacceptable
errors are introduced by ignoring Coriclis and
centrifugal terms in the example of Luh [Luh 801
Bejczy {Bejczy 743 went further and diagonalized the
coefficient matrices to obtain an approximate model
that allows rapid computation. This approximation is
insufficiently accurate to be generally useful and
velocitu and position feedback are required (o
stabilize the sustem and compensate for model
inaccuracies.

funh, Walker and Paul have an alagorithm for
computing the gereralized inputs required to produce
specified motion of a typical robot that may be fast
enough to be used for control i a computer
comparable to their PDP 11745 with floating-point
hardware is programmed in assembly language. AS
their paper shows, that is a remarkable improvemernt
it still falls short of permitting use of less
powerful computers programmed in o a high-level
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The re*‘ulrm: control law is an open-loop optimal control law

ianguage. Even so, it only does half of the
regulation task. B can be used to compute the
accelerations, velocitiss and  displacements from

gereralized force inputs or required force inputs
from specified motions, but saus nothing about what
the intermediate positions should be for afficient
movement between specifiasd end points. '

The theory of cell-to-cell mappinas for dynamical
sustems [Hsu S0a, 800l offars the possibility of doing
the v :t ma:mmfg of the control law computation off
line, sing only a smail amcn.mt aof integer
x_ﬂmuutaL;un to be performed on line in real time.
The resuiting control law is an open-loop optimal
contral law with ?ﬁeibaek monitoring and correction.
it is suitable for all rapid, larags-scale changes in
state of nonlinear d‘;‘ﬁd mic systems with constrained
inputs. The table lockus burden is sxpaptad to be
less than that of Raibert and Horn [Raibert 781 and
only integer data need to be stored.

. TIME-OPTIMAL COMTROL PROBLEM

it is

int of ihe robol manipulator
3:: -ation io a specified final
position in the minimum time subject o the available
gmaximum actuator torgue/force at each joint.  Kahn
Kahn 697 presented a sub-optimal control, based on a
linearized and uncoupled model with gravity and
averaged angular compensations. The
problem  of  path tracking is studied by
parametrization of the given path which provides
solutions alona the path [Bobrow 823

For an inocreased lea_e'i of productivity,
impartant that the en

move from an lﬂltx-:u.

valocity

The eguation of motion for an n-degree-of-
freadom manipuiator is [Yoon 891
Digag+Caa+G@=1. (13

Each joint of the manipulator is driven by an
sotyator which has limited driving torgue/force. The



control constraint set becomes

l‘!‘-(t.)lﬁ'r‘-ux foralltandi=42 .,n. @
Introducing 2n state variables x = [ gf, gT 1 T, the
time-optimal control problem can be stated as follows
: Given a continuous dunamical system with specified
initial state x; specified terminal state x; and
aonstrained control set U, find the admissible
controls, 7t} belonging to U, which transfer the
system from ¥g to ¥ in minimum time

) = £odt), 7Y, £ 3
xte) = %o @
) =x, ')

Tit) & U for all t ®

where x is a state vector, x = (¢, x5 -+ X T,and_‘[
is a control input vector, 7 = (7, T3, - Ta)'; and the
cost functional J is given as

by

r
J= J Folxtt), T(t) dt .

tg

)]

The search for an optimal solution is guided by
Pontryagin's Maximum Principle [Pontryagin 641, The
Hamiltonian is
28
Hg g 7.0 =3 & £ 1
=0
where ¥, = - 4, f5 = 1 and the covariant and state
equations form a canonical system

®

Ca i =
¢ & i=0LZem, O

¥, ==, i=42-,2n. ($11)]

i

g

The optimal control is the control which
extremizes the Hamiltonian throushout the time
required to move from xy to ¥;. To validate an
optimal contrpl strateqy, it is necessary to solve the
coupled state eguations and covariant eguations.
This is a set of 4n nonlinear, first-order ordinary
differential eguations in variables x and §, subject
tc boundary conditions on x at times ty and t;, i, a
two-point boundaru-value problem. The computational
difficulties are such that obtaining accurate
solutions for two-point boundary-value problems
involving more than a few eguations is not a trivial
exercise.

Recently optimal control problems especially with
bounded inputs, based on the Maximum Principle, have
been of interest in the desion of manipulator
controls [Kahn 69, Geering 861. A general numerical
scheme, which is based on Davidenko's method, has
been developed for a fixed-end-puoints, free-terminal-
time, optimal-control problem [(Yoon 88a, 86bl.
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3. TIMEOPTIMAL MULTISTAGE CONTROLLERS FOR
NONLINEAR CONTINUDUS PROCESSES

In a 1577 paper [Hsu 771, Hsu described a
technique for approximating the state-space reaions
of asymptotic stability surrounding the stabie
equilibria of nonlinear difference eguation sustems.
The backward evolution, point-to-point mappina of a
small closed curve encircling the stakle
singularities was said to determine regions of
asumptotic stability and these regions can be
systematically enlaraed so as to appreach the total
regions of asumptotic stability for  those
singularities.

In 1580, Hsu described a cellto-cell approach
[Hsu 80a, 80b], replacing the point-to-point mappinas,
which dramatically lowered the computational burden
of determining global regions of asymptotic stabilitu
if one would accept the uncertainty resultina from
cellular discretization of the state space. Since the
“unravelling alaorithm of global analusis” turned out
to be inexpensive to compule precision could be
regained by use of a areat many small cells, tupically
100 cell widths per prominent feature width zlors
each state-space axis in early examples.

Some of the numerical performance improvement
is no doubt lost when the procedure is applied
directly to nonlinear dynamic systems aoverned by
ordinary differential equations. In such cases cell-
to-cell transitions may be determined by integrating
the equations of motion,

K. G

s (14

over a small time interval, At, from initial states,
x(0), at the geometric centers of cells

.1

)
x4t = x® + J £ dt. Uz

“o
The cells which contain x(At) are defined to be ihe
nominal images of the cells which contained xzi0}

Then the same unravelling algorithm  allows
delineation of global regions of like dunamic
behavior.

In 1981 [Hsu 81], Hsu addressed the problem of
representing the fine structure of dunamic sysiem
behavior without resorting to extremely lara
numbers of very small cells. In the Gerneralized
Theory of Cell-to-Cell Mapping, Hsu abandored the
deterministic assumption that the mapping is unigque
in favor of a probabilistic process in which the
complete image of any cell can span multiple cells
Then the probability that a point-to-point transit
originating in 2 given cell will end in a specific
other cell is a function of the fraction of the volume
of the origination cell which maps into the specific
termination cell. By this process Hsu takes full
account of the inexactness of the mapping of righi
parallelopiped cells by arbitrary continucus
dunamical systems.

=




3.1 DYNAMIC SYSTEM REPRESENTATION

Departinog from Hsu's work, perhaps the liklihood
of unigue mappings can be increased in order to
aliminate the need to resort to multiple image cells
and probabilistic transitions by tailorina the cell
sizes and shapes io specific sustems [Johnson 361
Consider a swath of state space filled with celis
with longitudinal boundaries which conform to the
stream hupercurfaces of a particular dunamic system
phase fluid motion and transverse boundaries which
are equal slapsedtime hupersurfaces. In the absence
of singularilies and discontinuities, exact conformity
would assure deterministic cell-to-cell transitions
despite the use of comparatively lares volume cells.
The berefit would be the ability to represent with
confidence the dunamic behavior of a sustem as a
sequence of cell residences determined solely by the
initial cell and the particular inputs. This would
permit computationally inexpensive representation of
the dunamical behavior of stronaly nonlinear
systems. In particular, it could mean that optimal on-
line computer control would become practical. This
would be achieved by sxchanaing an amount of on-line
computation, which is too great to be performed in

; ¢ seeking to control fast nonlinear
T 3 existing methods of control
law design, for the considerably larger amount of
ing needed to define oells and cell-to-

i3

HSIT

As a simple example consider the pendulum shown
in Figure 1. ¥ this pendulum is thought of as a
simple, singledegree-of-fresdom robot arm, it would
be a robot with a joint actuator of considerable
powsr for the swath simulated and one capable of
velopira full torque immediataly.  The resulting
ories and contours of squal slapsed Lime
a zet of reoularly shaped cells of similar
which uniform  requiremsrts  on

impose

Figure 1 A Driven Pendulum. The enuation of motion
is (8% /dtH=r/m —tg/ Deis

Practical control systems reguire continual, or
at least freguent, verification of anticipated suystem
behavior and the possibility of correcting errant

pehavior. W the computational benefits of cellular
discretization are to be maintained, the computational
burden of corwertino measured state vectors intn
cell identities must be low. Simplest to identify from
state measurements would be Hsu's  uniform
rectangles. A compromise strategy could be the use
of systam specifio, nonunifornm rectangles.
Potentially, rectangular cells offer sasy
identification with sustem-specific tailoring to
reduce the extent to which the cell mappings are
NONUNIOUE.

If the swath of interest is assumed to be made
up of those trajectories which represent motion from
initial positions to the left with zero initial
veloeities to final positions to the right of the axis
of summetry with zero final velocities then the time
optimal ‘torgue schedule should be full positive
torque followed by full negative torque. Therefore
the picture of the swath can be complsted by plotting
negative-time trajectories back from the positive
abscissa with full negative torgue. See Figure 2.

@-

U\U:D\I\U/ ¢
Fiawe 7 Intersecting Exact Cells

This considerably complicates the desion of sustem-
specific cells with acceptably low incidence of
multiple imaaing, since, depsndira on which particular
initial and final =tates are specified, a  aiven
centrally located cell could be an approximation of
the positive torgue phase-fluid motion or the
neaative torgus phase-fluid motion. In fact, all of
the cells in the region of positive torgue
trajectories/negative torque trajectories overlap
could be approximations of either. Depending upon
the particular task, the cwitch from positive to
negative torgue could take place anuwhere in the
region of overlapn. Figure 3 shows a =et of cells
designed to represent the complete swath. Most cells
in the overlap region serve as starting points for
both positive torgue trajectories and neagative torgue
trajectories. Table 1 lists the one-Ab transitions for
positive and negative torgues for all of the cells in
Figure 3 which are required by the tasks
represented by the swath in Figure 2.




Table 1 Maminal Cell-to-Cell Transitions for One At.

CELL 47 —T CELL +7 —T
i 27 - 21 - 27132
2 648 - 22 - 33077
3 B 3D 23 2447 -

4 N7H - 24 23033 238D

3 16D 95l 23 30588 2458

& 1429 10070y 26 3162y 30(60)

7 16(29 11(39) 27 33(44) 3137

8 K7 — 28 - -

9 17 13HAD 29 - 2873
10 15(38) 149D 30 36(40) 29.32)
11 2437 1337 31 38098 36(71)
172 1347 -~ 3z - 37(.88)
13 475 — 3 - 38(.76)
14 268) 1K8 34 - -

15 2764 2048 H - 34(45)

6 -~ 27078) J6 4450 344

17 1873 - 37 - 40(.36)

18 25(48) 17(42) B - 41(.68)

19 26(84) 25(50 9 - -

20 2761 26(84) 40 - 34

41 - 40(.50)

3.2 OPTIMAL INPUT SCHEDULES

From Table 1, it iz possible to determine the
optimal input schedules for all tasks originating in
cells 1, 4, 8, 12 and 17 and terminating in cells 23,
78, 34, 39 and 35, the latter cell representing the
inability of the system to accomplish all intended
swath tasks while switching the torque only once.

Table 2 Optimal Torque Schedules

SCHEDULE At it 2t 3t 4t S5t 6t 7t 8t 9t

1 23+ 2 6 10 14 19 75 24 23
{ 2B++—— 2 6 11 1520 26 30 29 28
f M—— 2 6 11 21 27 31 36 35 34
{ 3%+— 2 611214273136 35 ¥
4 23— 5 10 14 19 25 24 23
4 28++—— 5 10 15 20 26 30 29 78
4 Mpre— 5 4015 27 31 36 35 34
4 IHH— 5 10 15 27 31 36 35 #
8 Z3+-— 9 14 19 75 24 23
8 28++—— 9 14 20 26 30 29 28
8 34— 9 14 20 27 31 36 35 34
8 IHte— 9 14 20 27 31 36 35 %
12 23— 13 19 75 24 23
12 ZB4+4— 13 19 26 30 29 28

42 Mae— 13 19 26 31 36 35 34
12 394+4++— 13 19 26 31 38 41 40 39
17 23— 18 25 24 23
17 28++— 18 25 30 29 28
17 Hatb— 18 25 30 36 35 34
17 39 ++— 18 25 30 36 35 ¥
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For this simple, single-degree-of-freedom sustem,
Table 2 can be constructed from Table | by
inspection. In higher degree-of-freedom systems the
development of optimal torgue schedules will have to
be automated.

For the twenty specific tasks considered,
beginning in cells 1, 4, 8, 12 and 17 and going to
cells 23, 28, 34 and 39, the schedules for bang-bang
application of torgue are developed from Table 1.
Note that the discretization is so coarse that cell
39 is found to be unreachable from cells i, 4, 8 and
17 (marked by asterisks), but cell 35 is adjacent and
on the safe side of the travel constraint. However if
multiple torque switchinas are permitted, cell 39 can
be reached from cells i, 4 and 8 according to Table
1.

3.3 TIME-OPTIMAL MULTISTAGE COMTROL LAW

A discrete event controller for aross motion of
a continuous plant like a robot would nperate as
follows:

i From a higher level in an overall
hierarchical control system, the local
discrete event controller would receive
a target state and convert it to a target
cell identity.

2. The local gross motion controller
assumes control of the plant  and
determines  the identity of the initial
cell.

3. The controller looks up the input
schedule for time-optimal control with
constrained inputs.

4. The controller looks up the
or nominal seguence of cell
at integer multiples of the
interval.

3. It applies the specified inputs for one
time interval and measures the resulting
system state.

6. It converts the fedback
measurements into a cell identity.

7. If the current state is within the target
cell relinquish control to a local fine-
motion controller.

8. If the current state is within the
anticipated cell of the nominal seguence,
ao to step 3.

9. If the current state iz within an
unanticipated cell, treat the current cell
as a new initial cell and return to step
3.

anticipated
residences
bhasic time

state

If the computational burden of datermining the
identity of the csll in which the sustem state
resides from position and velocity measurements
is low, the total computational burden of the
controller will be low.



3 4 SINGLE-DEGREE-OF -FREEDOM SIMULATION

A local or robot-level discrete event, aross-
motion controller was added to the numerical dunamic
simulation of the single-dearee-of-freedom pendulum.
Figure 3 show the connected discrete states
resulting from eight typical tasks within the basic

swath. .
6

',,7;/2\;
py
ey
{14 z&%ﬁ e
] ]z

Figure 3 Single Degree of Freedom Simulation

The task beginning in cell 12 and terminating in
cell 23 is carried out as Table 2 predicts. After
each At the state is near the center of the expected
cell. The next task, from cell 8 to cell 28, also
matches the nominal cell sequence of Table 2 but the
states at multiples of At are less centrally located
in the cells. The task of agoing from cell 4 to cell 34
is not successfully completed. The optimal torgue
schedule from Table Z carries the state along the
optimal cell sequence until cell 36 is reached. The
optimal torgue schedule then drives the state into
cell 40 instead of cell 35, The table of optimal
torque schedules tells the controller that cell 34
cannot be reached from cell 40, The most
complicated aspect of controller design is deciding
what to do about cases like these. Usually reaching
an adjacent cell will be acceptable and cell 39 can be
reached in one time interval from cell 40 The
fourth task in Figure 3 beains in cell 1 and goes to
cell 39. However, the nominal cell-to-cell transitions
predict that cell 39 is unreachable if the torgue is
to be switched only once. If three switches are
permitted the trajectory reaches cell 39 after 10AL.
This is certainly suboptimal. The optimal time-of-
flight for a continuous problem with the same initial
and final states is 9.48At.

Mote that this is a planned thres-cwitch
trajectory made necescary by the fact that the
nominal transitions showed cell 39 to be unreachable
from cell { in one switch and suboptimal performance
is to be expected. The torgue schedule is
4++++——+——— and the trajectory follows the nominal
cell sequence of 1-2-6-11-71-27-31-38-41-40-39.
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4. EXTENSION TO MULTI-DEGREE-OF -FREEDOM SYSTEM

The central off-line computational task is the
definition of state-space cell boundaries delinsating
6-dimensional volumes for a three-degree-of-fresdom
robot which represernt the approximate state
transitions during a fixed increment of time, AL [Yoon
88al. This results in a sufficiently nonuniform
collection of cells which has sufficiently low
cardinality that real-time computations can be made
for the motion betueen the cells. This is achieved
by making Ab guite larae compared (o the time neaded
by a mini or microcomputer to execute a suitable
control  law. Ideally a simple definition scheme
produces a set of cells which result in high
probabilities of ocorrect prediction of cell-to-call
transition, so that the possibility of multiple mapping
images can be neaglected. Such a schems may be
difficult to find, in which case the generalized
theory of cell-tg-cell mappinas [Hsu 811 must be
invoked. The major purpose of the generalized
theory is to address the problem of multiple mapping
images. In any case, feedback is used to compensate
for imperfections in the algorithm. A numerical
dynamic simulatipn of a thres-revolute rooot like a
PUMA Is used in the determination of thess cell
boundaries.

Unce the cells have been defined and labelled,
the simulation is wused to develop all of the
transition mappings from each cell under each of six
conditions: maximum positive effort and maximum
negative effort at each of the three actuators with
the intended manipulator load. With the slimination
of unnecessary cases and redundant transition
matrices and by using a sufficiently larage At, the
storage requirements wWill be reduced as far as
possible.  Further dramatic reduction is possible if
trajectories are assumed to be confined to a swath
across the state space which accomodates all
possible motions associated with a particular task or
tupe of task. This is in contrast to filling the
entire state space with cells.

The At for cell definition is orders of magnitude
larger than the sampling interval for a conventional
discrete controller or the time step for numerical
intearation of the eguations of motion. It need anly
be small enough to define cell  boundaries
sufficiently close to the continuous optimal switching
surfaces to be able to deliver the load to a

neighborhood of the desired end state without an
undus  number  of  suboptimal, feedback-induced
corrections. The terminal neighborbood must he

small enough to permit completing the process of
reaching the target state using a low-speed, terminal-
guidance control law without incurring sionificant
extension of the elapsed time.

For an n-degree-of-freedom sustem, the cells are
to be desianed from the trajectories In 2n-
dimensional state space. It is not easy to visualize
trajectories directly in more than a 3-dimensional
space. This difficulty can be removed if



trajectories are projected and shown in a series of
2-dimensional views. For the example of the oaross-
motion of a robot which is usually a three-dearee-of-
freedom system, the cells occupy volume in 6-
dimensional state space.

In an example of PUMA in Figure 4, trajectories
for 27 neighboring initial conditions are computed
applying positive torques for 1At Fir‘gt,, hypercube
of trajectories are projected in 8,- 9, plane and
holding él axis trajectories are projected in 8,- 9,
plane. These processes are repeated in 65- éz, 62 -
6y and 85~ 65 plane. The cells can be desianed based
on these trajectories in five Z-dimensional plane
cells. First horizontal boundary lines which lie
approximately halfway of the swath are drawn and
horizontal boundary lines are completed by drawing
lines simply at the same distance from the horizontal
lines to the starting/end trajectories. Vertical
boundary lines are drawn in a way that cells can
accomodate the trajectories.
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Figure 4 Three-DOF PUMA Cells

The cells in any dimensional space can be
designed projecting the hupercube of trajectories
forward in 2n-1 2-dimensional space and the cell-to-
cell control proposed in this chapter can be applied
to any number of degree-of-freedom sustem.

5. SUMMARY

A scheme for drastically reducing the
computational burden of on-line digital imposition of
time-optimal control of strongly nonlinear systems
has been presented by example. It appears suitable
for gross-motion control of revolute robots. The
basis of the scheme is the relaxation of the
controller assignment from continuous or pnin.t.—_t.u—
point management to cell-to-cell transition
managesnent. The cells, in turn, are based on
rnumerical dynamic simulations of as detailed a model
of the plant as necessary and their specification
represents the “desiagn step” in the averall process
of achieving improved transient performance.

The single-degree-of-freedom sustem described

above performs well under cell-to-cell control. The
controller coding is simple and encourages the
expectation that an inexpensive microprocessor could
provide time-optimal, gross-motion control in real
time. The memory requirement is modest but would
increase dramatically as the number of dearees of
freedom and the dimensionality of the state space
increase.
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