‘89 KACC 1989. 10. 27~28

A WORLD MODEL BASED OFF-LINE ROBOT PROGRAMMING SYSTEM

J.H. Ko, J.H. Park, M.J. Chung

Dept. of Electrical Enginecring, KAIST
P.O. Box 150, Cheongryang
Senul

Korea

In this paper, a programming system for robot-based manufacturing cell which can control and simulate
manufacturing devices as well as robots in workcell is proposed and developed. The system is based on world
model, and modern textual and object-level robot programming language and interactive graphic world modeler are
used to construct and exploit world model. Graphic simulation is used as an efficient and easy to use debugging or
verifying tool for user written robot programs. Machine dependency is minimized by adopting the hierarchical
control structure and by assuming all the workcell components as virtual ones.

1. Introduction

Industrial robots generally work with other pieces of
equipments such as part feeders, sensors, and conveyors ,and
they together constitute manufacturing workcells. In these
robot-based workcells, the main role of robots are serving

- tools to production machines or doing the production itself.

The robot-based workcell has some characteristics: 1)
Most of tasks in the cell are performed in cooperation of
various kinds of cell activities|1}. 2) Relatively easy to
adapt to the new manufacturing process. This versatiity of
robots is well suited for small production quantity and short
product life cyclef2]. 3) The programming can be done in
two distinct phases: planning phase and run time phase.
Workeell layout, programming, and debugging are accom-
plished in the off-line planning phase, but actual motion
control is done in the run time on-line phase[3]. 4) The
classes of users are diverse from the sophisticated to shop
floor level operators. The sophisticated users want a com-
plex and expressive programming system, but the shop floor
operators want a simple and casy-to-use system[2].

From these characteristics of the robot-based workcell,
a robot programming system is required to have the follow-
ing features: 1) Supervise all activities in the cell as a
whole; 2) Provide off-line programming facilities such as
high level programming languages and simulation system to
cut down cost and to reduce production downtime during
reprogramming; 3) Be flexible to adapt to thc dynamically
varying environments and applicable to diverse tasks without
serious change of equipment; 4) Have abundant expressions
and the ability to abstract the workcell for different classes
of users and to provide increased user-friendliness; and 5)
Control the cell equipments in real time.

Before we describe a new programming system, we will
briefly review the existing programming systems. 1) In
robot teaching, most of programming systems use textual
languages complemented with leadthrough. Leadthrough has
the advantage in teaching specific desired positions in the
workspace. On the other hand, textual language can provide
complex calculations and utilize sensory informations, and
communicate with other computer-based systems[4]. 2) For
off-line programming, the information about the cell must
be introduced into the programming system through a
modeling system and planned tasks must be verified through
an appropriate simulation system. However, few of the sys-
tems use these facilities in programming{5]. 3) Almost all
systems are designed for the specific robot types and cell

589

configuration. In these cases, it is almost impossible to
change the constituents or configuration of the cell[6]. 4)

Most of the programming systems are suitable for a single
robot system. The cooperation with other robots and
computer-controlled devices is performed by serializing the
actions of each picce of equipment along a time axis. With
this scheme, only loosely coupled tasks can be expressed.
For closely coupled tasks, more powerful communication
means are required|7].

As shown in the above descriptions, the previously
develped programming systems have some drawbacks espe-
cially in their programmability and flexibility. With these
limitations in mind, we propose a new programming system
which has the following properties:

1) The programming system uses a worid model both for
increasing programmability and for providing communication
channels between programming modules. The world model
includes not only geometric information but also various pro-
perties of every cell component in structured way. Since the
world model is a central information database, the world
model is shared by each programming module, such as a
geometric modeling system (GMS), a language interpreter, a
graphic simulator, and a source-level debugger.

2) To provide increased adaptability, the programming sys-
tem adopts a hierarchical control structure[8][9] in which
machine dependent parts of the system are localized and
tasks are carried out by multiple dedicated processors in
parallel.

3) For increased programmability, it allows not only
manipulator-level programming but also object-level pro-
gramming. Programmers can easily express various classes of
task from simple to complex one by mixing the commands
of these two different levels.

4) Since the workcell components and their properties are
descibed symbolically, more portable, machine indepen-
dent[10}, and self-documented programs can be written.

This paper consists of six chapters. In Section 2, we
describe the proposed system architecture, the world model.
Section 3 describes the GMS in detail, and Sections 4 and 5
present language descriptions and a simple example using the
language with the simulation result.

2. System Architecture
(1) Hierarchical Control Structure

The control structure of the programming system is

divided into cell control system, workstation control system,
and device control system according to the level of abstrac-

tion as shown in Fig. 1.

varkcell inforna tion
e tash plgn

—B Geometric
Modeling

Systen< GMS)

L

World Model
Data Bose

——

Cetl

Controller

foodbals| fron
worustotiof controll

Workstation
Controtler

Worktation conbroll

oevice contral
cannands

From

Feedoack|
wevice | controlter

g

davice contral
woral

Device Controller

Fig. 1. Control system structure

Cell control system: User interfaces such as layout, pro-
gramming, and debugging are accomplished in this level.
As a user lays out the workeell using GMS, the geomctric
information of the cell is stored in the world model for
later use in programming and simulation. Once the layout
is done, the user can program using a textual language
based on the geometric information. The program may be
verified or debugged on the graphic display using a
simulator and a source code level debugger in off-line. If
the verification is satisfactory, an intcrpreter translates
object-oriented commands (e.g. “MOVE object TO goal
WITH robot;") into device-oriented commands ("MOVE
robot TO object.grasp_point; GRASP; MOVE robot TO
goal; RELEASE;") and then, the device-oriented com-
mands are issued to the lower level controllers of worksta-
tion. The feedback information from the workstation con-
trol systems is gathcred also in this level to update the
world model or to change the flow of operations according
to feedback information.

Workstation control system: This level of the control system
is responsible for supervising various devices and reporting
feedback information from the device controllers to the
cell control system. During the workstation control, some
calculations(e.g. path interpolation or kinematics solution)
or conversion of command codes into device code is donc.

Device control sysiem: This level of the control system is
responsible for controtling physical devices according to the
commands from a workstation controller and sending back
the status of physical devices to the workstation controller.
If a device has its own processor, it is controlled by high
level commands from a workstation controller, and if a
device has no processor, it is directly controlled by low
level control signals from the workstation controller.

In the cell control level, the access and control of the
workcell equipment is accomplished via virtual equipment
which is described in the world model. And a task in this
level is executed with other tasks in time sharing basis. But
tasks in the workstation control level arc executed in real
time. Therefore, there is inevitable timing discrepancy
between these two levels. To overcome the timing
discrepancy we adopt a concept of periodic interrupt and
command buffers as in RCCL[11]. That is, the workstation
controllers respond to the buffered requests from the virtual
equipment in every T seconds. If task commands do not
require any timing synchronization with other activities, the
commands are issued through the command queues, and the
commands which require synchronization are directly issued
command channels. For virtual robots and machines which
have their own processors, commands may be preplanned
and issued in advance through command queucs, provided
the commands do not require any interaction with other
equipment. On the other hand, the virtual devices are linked
via the command channels, since they require the commands
to be processed in the specified time slot.

590

(2) World Model

A world model -is defined as the internal computer
representation of a manufacturing workcell. Therefore, the
world model is responsible for representing current states of
the real manufacturing workcell as exactly as possible and
having all the information about the workcell components to
assist the modules which require the current state of the
workcell. However, a world model has been used only for
structured position description. In the proposed system, a
world model is extensively used not only for structured
geomctric descriptions of a workcell but also for tracing
assembly status when the interpreter decodes object-level
commands and also for integrating the function modules of
the system. Since every function module is integrated
through the world model, the world model is designed to
guarantee mutual exclusion between competing modules and
to reflect the modification of the workcell during task exe-
cution dynamically.

To model a robot-based workcell, we categorize the
cell elements into five groups robot, machine, device,
object, and communication port. The world model consists
of linked list structures of these elements. The attributes of
each element are shown in Fig. 2.

World

7

N

robot-list machine-list device-list object-list port-list
nane I nare nare nane queve-list
georetry [geometry geanetry geometry chonnel-is
port [” port port nose

base base base retations

taat stote state " mass/inertia

T

state relatians reis tions

relations

DH-parameters

Fig. 2. Structure of world model

Geometric description is the representation of the shape of
an object, which is represented as a set of vertex point
list, edge list, and surface list.

Base is a homogeneous transformation matrix, which
represents relative transformation with respect to its parent
object.

Status is current state of a component. It is updated
automatically to represent correct values.

Port is the communication buffer which links a wvirtual
equipment with its actual equipment. For example, as a
communication port, a robot and a device has a queue and
a channel, respectively.

3. Geometric Modeling System and Simulator
(1) Geometric Modeling System

The GMS models real world objects geometrically and
connects them to form a world model. This world modeling
process can be divided into two phascs: object modeling
phase and workcell layout phase.

In object modeling phase, objects are constructed
geomctrically out of primitive objects through Boolean
operations. The resultant object contains its sub-objects and
their relationships. Geometric information of primitive
objects are stored as boundary components such as sur-
rounding surfaces, edges and vertices. These three group- of
the geometric information are stored separately but they are
inter-related through pointers, so there exists minimal redun-
dancy while the completeness of geometric information is
maintained. The information of boundary surfaces of an
object is stored in the surface group and each boundary sur-
face has pointers to boundary edges. Similarly, boundary

edge information is stored in the edge group and each boun-
dary edge has pointers to two end vertices. The vertex
group has the coordinate values of each vertex point in real
world, which are represented in Cartesian coordinate system.
Thus, a graphic image can be reconstructed without ambigui-
ties in either wire-framed mode or surface-shaded mode.

The integration of primitives or simple objects for com-
plex ones is done by determining the mutual relationship of
objects and connecting them. The relationship between primi-
tive objects is expressed by a homogencous transformation
matrix which defines the relative positional and rotational
relationship between local coordinate frames of these
objects. This relationship may be varied or fixed, depending
on whether the object is a moving object such as a robot or
stationary object such as a table. In this way, robots or
other cell components are treated in the same manner. A
robot link is constructed by integrating primitive objects until
a realistic model is acquired, and a robot itself is con-
structed by integrating such links. This construction pro-
cedure of objects is done interactively on the graphic termi-
nal, so it provides substantially fast and erroriess geometric
modeling of robots and other workcell equipments.

In workeell layout phase, previously modeled and stored
objects are retrieved from the databasc and placed at the
desired position with proper orientation and initial posture in
workceell. Since this phase is done also graphically, errorless
and efficient layout can be accomplished in relatively short
time.

(2) Graphic Simulator

The graphic simulator shows the motion of the cell
components graphically in user-defined viewing environment.
This viewing environment includes variable view direction,
zooming ratio and multi-view mode. In multi-view mode, the
same object is displayed in four different view directions, so
its 3-dimensional shape can be easily understood.

The motion of robots is controlled in either passive or
active mode. In passive mode, the graphic simulator
displays the current state of a world model faithfully as it is
changed by other modules which access and update the
world model. In active mode, the graphic simulator changes
the geometric information contained in the world model
through a teach pendant emulator or a pre-planned robot
trajectory. Using the teach pendant emulator, user can gen-
erate legitimate paths for any moving workcell constituents
on the graphic monitor. The pre-planned trajectory, which
is generated by an external trajectory planning system, can
be graphically simulated and checked for collision or joint
limit excess and to improve the trajectory by eliminating or
reducing redundant motions of robot.

4. Language Description

There are two basic approaches to the design of tex-
tual programming language: One is the extension of an
existing language by a library of functions (e.g. RCCL);
The other is the development of a new language. In the
proposed system, we have taken the second approach. One
merit of the second approach is that it makes programs
easily understandable owing to an appropriate syntax.
Another merit is that it makes possible to detect the pro-
gramming errors during syntactical analysis. Robot pro-
gramming languages are often classified into several
categories according to the level of the abstraction of a
workcell. Three frequently classified levels are: task level,
object level, and manipulator level, although there is no
operational task level programming language yet.[12]

in the new language, we provide both object level
commands and manipulator level commands, for a simple
description and a detailed description respectively. The
language also allows users to describe the workeell symboli-
cally in the program so as to increase the programmability

591

and readability. The language descriptions are divided into
five groups : statements for the symbolic description of a
workcell, statements for coordinating cell activities, state-
ments for structured programming, statements for managing
a world model, and data types and expressions

(1) Workcell Description

To describe a workeell, its components should be suit-
ably abstracted for the readability and portability of a pro-
gram. Considering it, in the proposed language a user can
specify cell components with their attributes in the beginning
of the program to prevent excessive dependency on the
environment.

The description of a workeell is accomplished by simply
describing attributes of cell components with their names.
Some important attributes are as follows : MODEL for
referencing geometric information which is already defined in
the GMS; AFFIX for indicating geometric relationships with
other components; BASE for expressing the location of the
base frame of a component; PORT for denoting the com-
munication port of equipment.

<workeell description> 1= WORKCELL { <descriptions> }
<descriptions> 1= <description>
| <descriptions>> <description>
= <component type> <name> <attribute list>;
<compouent type> ::= ROBOT | MACHINE | DEVICE
{ OBJECT | QUEUE | CHANNEL
<attribute list> 1= MODEL = <model name>
| AFFIX <component> [BY <relation> |
| STATE = <statc name> | PORT = <port name>
| TOOL = <tool name> | S_RATE = <expression>
| SIZE = <expression> | KEY = <expression>
| TYPE = <type declaration> | BASE = <location>

<description> ::

When the interpreter decodes the description state-
ments, a world model is constructed. For example, lct a
fobot named 'puma’ be connected to a vision system, vision’.
Then, the declaration of the robot and the vision sensor is
written as follows :

ROBOT puma MODEL="pumaS60" PORT=Puma; DEVICE vision
MODEL="ccd" PORT=Vision;

(2) Workeell control

Tasks are accomplished by controlling the tools and
other manufacturing devices along the desired locations and
paths in the workspace. Since tools are moved by robots and
NC-machines in most cases, appropriate means of control-
ling and coordinating these equipments are required.

Programs for workeell control differ from other pro-
grams because the sequence of controlling the workcell
depends upon unpredicted external factors which cannot be
controlled. To overcome this difficuity, the proposed
language provides some means for adapting to uncertain
working environment such as status feedback, active motion
correction, abrupt stop of motion, and monitoring the
guarded conditions.

motion control statement: In the proposed system,
transfer of an object or a tool in three dimensional space
is accomplished by a simple MOVE command. This com-
mand directs the robot(s) to move an object or a tool
from one location to another while satisfying some con-
straints. On the other hand, operation control of a device
or a machine is exccuted through an OPFRATE com-
mand.

Here, prefix defines a motion path of an object.
Available paths are straight linc (SMOVE), circular line
(CMOVE), spline (PMOVE), and continuous path by
leadthrough (LMOVE).

Object represents the subject in motion. Robot and tool as
well as real object may be substituted for "object” to

<motion control>
1:= <prefix>> MOVE <object> TO <goal location>
[WITH <specifications> | | THEN_HOLD };
<operation control>
::= OPERATE <device> | WITH (<expression Jist>) |
[THEN_HOLD [;
<abrupt stop> ::= STOP <robot or machine>;
<specifications> 1= <specification>
| <specifications> <specification>
= DURATION = <cxpression>
| SPEED = <expression>
| FORCE = <expression>
| APPROACH = <vector>
| DEPARTURE = <vector>
| VIA <location list>>
| AFFIX (<component list> }
| PARAMETER = (<expression list>)
| GRASP (<grasp robot>, <grasp point>)
| SYNC /*

<specification> ::

ctive motion control flag */

represent the subject of motion.
Specification is for annexing restriction or providing more
detailed information to the motion planncr. The informa-
tion that can be designated through the specification are
motion parameter, motion path, and motion control flag.
The motion parameters which can be specified are velocity,
duration of motion, and magnitude of applying force, etc.
The motion path is described by specifying via points,
approach vector, and departure vector. The motion control
flag SYNC is specified with motion control statement for
the tracking and the active motion correction.
is set, then motion control
without delay.
Then_hold is for the synchronization between motion and
command. When this word is used at the end of motion
control command, the rest of statements are performed
after the motion control statement is finished. Otherwise,
there may be a difference between the time of issuing a
motion command and that of executing the motion.
Interlock & communication: Important requisites for
controlling workcell are message communication and syn-
chronization between tasks or activities. In our language,
the communication and synchronization between tasks,
which is called communication, or activities, which are
called interlock, are accomplished via communication ports
and channels. For communication, three kinds of primi-
tives are provided: one for simple synchronization between
tasks (SIGNAL/WAIT), another for synchronous mes-
sage communication (SEND/RECEIVE), and the other is
asynchronous message communication(channel expression).
But, for interlock, only the last two primitives are pro-
vided.

In synchronous communication, a source is blocked
until a destination receives the messages. and the destina-
tion is also blocked until the source sends the message.
Hence, data transmission is always successful though there
is a chance of indefinite time delay. However, in asyn-
chronous communication, data transmission is not always
successful, because a source or a destination does not wait
for actual message transfers and there is a chance to
overwrite on the previous data. Channel expression is an
expression which uses channels as if they are variables.

is performed immediately

<statements for synchroni. -ion between tasks>
1= SIGNAL <event>; | WAIT <event>;
<statements for synchronous communication>
= SEND <data> TO <channel>;
| RECEIVE <data> FROM <channel>;
<statements for asynchronous communication>

= <channel> = <expression>;

If the flag -

592

| <variable> =
<statements for unconditional delay>
= DELAY <exprcssion>;

function(<channels>, <variables>);

For guarded motion, UNTIL clause can be used with
cell control statements. e.g.: -

MOVE puma TO goal UNTIL pressure < 1.4 ;

(3) Basic Primitives for Structured Programming

The proposed system has an alternative construct (IF
“ THEN ~ ELSE), a repetitive construct (WHILE -, DO
* WHILE, FOR ~), a parallel construct (COBEGIN ~
COEND) as well as normal sequential program composition
as a fundamental program structuring primitives. In addi-
tion, the language has the formatted sequential read/write
primitives with file open/close primitives for input and output
with the external environment.

A parallel command specifies concurrent execution of
its constituent tasks. The constituent tasks are started
simultaneously and the execution of parallcl command is fin-
ished when the constituent tasks have all terminated. Every
task started by the parallel command has no common vari-
ables except for the world model. The communication
between the tasks is, therefore, possible only through com-
munication primitives and the world modcl.

The proposed language has a general-purpose text
macro system as in C language. It reduces the amount of
repetitive typing, and allows the symbolic definition of con-
stants and variables. Likewise, parametered functions are
provided to reduce the amount of codes when similar com-
putations or operations are required at scveral points in the
program.

(4) World Model Control

In the integrated system consisting of various program-
ming modules, the operation results of one module should be
propagated to other modules. The propagation is accom-
plished through world model control primitives.

To represent the geometric relationship between each
member of an assembly, the proposed system provides
special pseudo commands (AFFIX/UNFIX). These pseudo
commands are not for actual motion control, but for
declaration only. They merely declare that one object is
affixed to others. When an object is affixed to others, a
user can specify the relative transformation between the
objects. On the other hand, access to the data about the
world model is accomplished by specifying the attribute with
the name of the component. These facilities are indispens-
able for utilizing a world model in the cell programming as
well as in the data transmission between programming
modules.

AFFIX obj; TO obj, [BY <transformation> J;
UNFIX o0bj, FROM o0bj,;
<world access> ;= <component name> . <attribute name>

(5) Data Types and Expressions

Since geometric expressions for positions, orientation,
and paths of an object in Cartesian space are frequently
used in cell programming, a cell programming language
should provide the representation and computation of
geometric informations as well as the basic data types and
expressions.

Table. 1. Geometric functions

rgwmctric functions l vector(), rot(), frame(}), joint(} I

The basic data types in our language are CHAR, INT,
REAL, VECTOR, ROT, and FRAME. Vector consists of
three real numbers specifying (x, y, z) values, which

represent quantities like translation, velocity. ROT(rotation
) is a 3x3 matrix representing orientation about an axis.
Frame is a 4x4 matrix that is used to represent a local
coordinate system or a transformation from one coordinate
system to another. Operators and data types are summar-
ized in Table. 2.

Table. 2. Data types and available operators

data types
CHAR, INT, REAL

operators
+ - % = && || !
< <= > >= == I=

+ = *= WRT

VECTOR, ROT, FRAME

5. Example

As a simple example of the programming system, wc
construct a robot-based workcell as shown in Fig. 3. The
cell is composed of two robots(puma and tiger) to assem-
bly workparts cooperatively, three conveyor belts, and one
pallet. As parts (prisms and cubes) are transfered on the
conveyor belts. The position and orientation of each part is
determined using vision system (left_eye and right_eye).
The function of each robot is to pick up a part from the
conveyor belt and insert it into a fitted hole of a pallet in
parallel, and then lift up the pallet together and transfer it

to the third conveyor belt.

(1) Workcell Program
#define ROBOT “ttya”
#define VISION "ttyb”
#define LEFT_WS ‘"ttyl”
#define RIGHT WS ‘"tty2"

define workeell {
robot puma model="puma” port=Puma,
tiger model="tiger" port=Tiger;
machine left_ cye model="left_cye" port=Left_eye,
right_eye model="right_cye" port=Right_eye;
object prism model="prism", cube modecl="cube",
pallet model="pallet";
queue Puma size=50 port=ROBOT of LEFT_ WS,
Tiger size=50 port=ROBOT of RIGHT_WS,
Left_eye size=2 port=VISION of LEFT_WS,
Right_eye size=2 port=VISION of RIGHT_WS;
channel left_ camera type=struct
{ int signal; frame loc; },
right_camera type=struct
{ int signal; frame loc; };

t

main()
{rot gprot={0,1,0, 1,00, 0,0,-1};
frame gp=frame(gp_rot, vector(0,0,50));
frame puma_grasp=~frame(rot(yaxis,-90),vector(120,0,10)),
tiger_grasp=frame(rot(yaxis,90),vector(-120,0,10));

cobegin
{ /* task of the left workstation®/
frame hole = frame(rot(xaxis,0), vector(60,0,10));

operate left_eye with parameter=(left camera);
while(! left_camera.signal);
prism.base = left_camera.loc;
move prism to hole w.r.t pallet
with grasp(puma, gp)
approach=vector(0,0,200) then_hold;
affix prism to pallet;

}
{ /* task of the right workstation®/
frame hole = frame(rot(xaxis,0), vector(-35,0,10));

operate right_cye with parameter=(right_camera);
while(! right_camera.signal };
cube.base = right_camera.loc;
move cube to hole w.r.t pallet
with grasp(tiger, gp)
approach=vector(0,0,100) then hold;
affix cube to pallet;
move tiger to frame(gp_sot,vector(0,-300,200) w.r.t cube;

coend

move pallet to trame(rot(xaxis,V),vector(l),600,U0)) w.r.t pallet
with grasp(tiger,tiger_grasp) grasp(puma, puma_grasp)
departure=vector(0,0,200) approach(0,0,200);
}

(2) Simulation Results

Fig. 3 and Fig. 4 show the intermcdiate results of
example program.

Fig. 4. Final result

6. Conclusion

Robot-based manufacturing workcell consists of various
pieces of equipment such as robots, manufacturing devices,
and special tools and sensors. The importance of the
cooperation of these pieces of equipment is increasingly
required as tasks are more sophisticated. For robot-based
workcell programming, we have proposed and implemented a
new programming system. The proposed system is based on
world model and has classical hierarchical structure to
reduce the machine dependency and to exploit the advan-
tages of parallel processing by multi-processor.

The system is divided into four programming modules :
One is the GMS which is used to design and layout
workcell, another is a high level programming language, the
third is the graphic simulator for conforming tasks before
real execution, and the fourth is the world model to com-
bine these modules into one integrated system. The system
offers users the convenience of programming by allowing to
access cell equipment and information symbolically through
the world model.

The system has been implemented on a Sun-3 worksta-
tion under the UNIX operating system as a cell controller,
MVME-133 32bit monoboard microcomputers as workstation
controllers, and two Rhino robots as robot manipulators as
in Fig. 5. Communication between thesc layers are accom-
plished through RS-232C serial communication lines. The
language interpreter, the GMS, and the graphic simulator
have been implemented using UNIX utilities { Lex and Yacc
), Sun graphic package (SunView), and C language.

Some experiments with this system have shown its vali-
dity in off-line programming and the advantage of using the
world model. But there were some bottlenccks between the
cell controller and the workstation controllers in physical
runs because of communication speed. Improvement in

communication using a high spced network remains for
further study.

st rectery
e yaters
CRT @ TP vorkeet controlleg 217>

[oahiIg. ——=
. — W btk

— e et
adator
Gragpac ol K
noriar <GB
tner works tati
por it
oAl e commcabon Tk >
r-llﬂ—r\ull Ext U
er iy l.

Workstation
cantroiler

rowat roeot machme
controter, controae| contratier|

Fig. 5. Workcell control architecture

References

1.

10.

11.

12.

B. E. Shimano et al, "VAL-IT : A New Robot Control
System for Automatic Manufacturing”, Int. conf. on
Robotics, 1984

T. Lozano-Perez, "Robot Programming”, Proc. IEEE,
vol.71, no.7, 1983

S. Mujtaba and R. Goldman, AL User's Manual, Stan-
ford Univ., Dec. 1981

S. Y. Nof, Handbook of Industrial Robotics, John Wiley
& Sons, 1985

M. P. Groover et al, Industrial Robotics Technology:;
Programming, and Applications, McGraw-Hill, 1986

U. Rembold and K. Horman, Languages for Sensor-
Based Control in Robotics, Spinger-Verlag, Germany,
1987

K. G. Shin and M. E. Epstein, "Intertask Communica-
tions in an Integrated Multirobot System”, IEEE J. of
Robotics and Automation, vol.4, no.1, 1988

A. Jones et al, "A Proposed Hierarchical Control
Model for Automated Manufacturing systems”, J. of
Manufacturing Systems, vol.5, no.1, 1986
B. O. Wood et al, "MCL, The Manufacturing Control
Language”, Proc. of the 13th ISIR, 1983

A. Danthine and M. Geradin, Advanced Software in
Robotics, North-Holend, 1983

V. Hayward and R. P. Paul, "Robot manipulator Con-
trol under Unix RCCL: A Robot Control "C"
Library", The Int. J. of Robotics Research, vol.5, no.4,
1986

R. A. Volz, "Report of the Robot Programming
Language Working Group : NATO Workshop on
Robot Programming Languages”, IEEE J. of Robotics
and Automation, vol.4, no.1, 1988

594

