'89 KACC 1989. 10. 27~28

Research on the Collision Avoidance of Manipulators
Based on the Global Subgoals and a Heuristic Graph Search

Y. Inoue* , T. Yoshimura** and S. Kitamura**

* Graduate School of Science and Technology
Kobe University, Rokkodai, Kobe 657, Japan

%

Faculty of Engineering, Kobe University

Abstract. A collision avoidance algorithm based on a heuristic graph search and subgoals is presented.
The joint angle space is quantized into cells. The evaluation function for a heulistic search is defined by
the sum of the distance between the links of a manipulator and middle planes among the obstables and
the distance between the end-effector and the subgoals on desired trajectory. These subgoals reduce the
combinatorial explosion in the search space. This method enables us to avoid a dead-lock in searching. Its
effectiveness has been verified by simulation studies.

Introduction

Collision avoidance problem are important issues for
the task planning of robot manipulators. A number of
avoidance methods have been proposed, which are clas-
sified into two types; "potential method”({1] and "config-
uration space method”{2). Since the potential method
is based on the minimization of potential functions, the
dead-lock problem to fall into the local minima may ex-
ists and general solution for the dead-lock problems have
never found. The configuration space is a space of pa-
rameters that describe the posture of manipulators , and
a graph whose nodes represent the cells of quantized joint
parameter space is used to describe it. Each node is la-
beled depending on whether the corresponding configu-
ration of manipulator is safe or not. This method can
remove the dead-lock problem. However, in the case of
high d.o.f. manipulators, the number of nodes for com-
plete configuration space grows exponentially. Therefore
it is impossible to generate the entire configuration space
even for the 6 d.o.f. manipulators. Lozano-Perez{2] and
Hasegawa[3] proposed methods to decrease the dimen-
sion of configuration space, based on the idea that only
few joints have an important effect on the gross motion.
But the solutions of this method are subset of general
solution. Kondo [3] applied the heuristic graph search
method to this problem. A heuristic evaluation func-
tion for searching is defined so that the links near the
base preferentially act during the motion. The bidirec-
tional search with a priority for expansion between the
search directions was performed and the search whose
surrounding was narrower than that of the opposite direc-
tion search may be expanded first. These scheme reduces
the size of searching space and computational costs. But,
because the heuristic function is designed only to find the
shortest path in the configuration space, the links and
end-effector cannot avoid to move near obstacles and the

609

modification method is applyed after the shortest path is
found.

In this paper, we propose a heuristic graph search al-
gorithm with subgoals on the global path of end-effector.
The heuristic evaluation function can give the local in-
formation necessary for searching as a potential function.
We defined a evaluation function as a sum of two func-
tions: a potential function for end-effector to reach the
goal configuration and the one to avoid the collision be-
tween the links and obstacles. Employing the global path,
the combinational explosion of searching can be reduced
in the search procedure. If no global path is used, heavy
back tracking may occur and it causes computational cost
for searching explode quickly, because the heuristic funec-
tion does not work efficiently in back tracking.

In the following sections, we propose a search algo-
rithm using only heuristic function and another algorithm
with the global information. The difference of planned
motion is shown by simulation of 4 d.o.f. manipulator
and a measure for search efficiency.

Search algorithm and heuristic function

The graph for configuration space is defined as a multi-
dimensional grid in the joint parameter space. A closed
set of collision free configuration is called ”free space”.
The heuristic function is used to find the free space in-
cluding initial and final posture and a trajectory for ma-
nipulator motion is defined as the shortest path in the
free space. The nodes are visited in the order of evalua-
tion function until the final configuration is found.

We define the heuristic function as a quadratic form

1
ev = E(XE - XYW (X, - X¢)

+ k) Wok [(X))] 1)

Y

A >

—

An example of the Safety First Plane in 2 di-
mensional workspace and distances dy

[Fig.1]
where X, and X are 9 x 1 configuration vectors in
Cartesian coordinates, and W, is a 9 x 9 weighting ma-
trix, and w,y is a scalar weighting factor. This function
is the same one defined for an algorithm based on the
potential method[5]. The first term of the right side is an
error between the current configuration of end-effector X,
and a desired configuration Xg, and the second term is a
sum of distances between the center point of the volume
of k-th link X and the nearest middle plane among the
obstacles. The sets of middle plane are uniquely defined
from geometrical data of workspace. We have called it
the ’Safety First Plane’. Figure 1 shows an example of
the Safety First Plane in a 2 dimensional workspace and
distances dy = d(X}) for the second term of eq. (1).

A heuristic graph search algorithm
based on local information.

We first apply only the heuristic graph search algo-
rithm without global path of end-effector to the collision
free path finding. Searching and its limits were studied
by simulation. We use a list structure for the data man-
agement of free space because using a list structure, the
dynamic memory allocation for the free space is available.
The parameters for each node are defined as

NODE th
ev
pc
PP
be
ne
st

parameter list of joint angle

value of heuristic function

path cost from start node

pointer to the parent node

pointer to the prévious node in the list
pointer to the next node in the list
state in hash table

The parameters be, ne, st are used for list data manage-
ment. Two types of lists are used for the searching[6].
The one is called "open-list” which keeps the nodes once
visited but never expanded. We call such nodes the front
nodes. Another list is called "closed-list” to keep the
nodes expanded or the front node without descendant.

610

%74

Obstacle

N\

\M'\

5

6i

[Fig.2] The process of the expansion of the node during
the heuristic graph search

HGSL (Heuristic graph search based on local
information for collision avoidance)

Figure 2 illustrates a process of the expansion of the
node during the searching. The HGSL method is follow-
ing.

Let 7 be a set of nodes in the searching tree.

Step 1 Compute the set of middle planes from given ge-
ometrical data for working environment.

Step 2 Let s be a node of an initial configuration. Cal-
culate the evaluation value ev in eq. (1) . Substitute the
value ev for the parameter ev of s, and also substitute
the joint angle of manipulator for th of s and add the
node s into the open-list.

Step 3 Let the closed-list be empty.

Step 4 If the open-list is empty, the searching has failed
and ends.

Step 5 Select the node which has the least value accord-
ing to the evaluation value in the open-list. Delete the se-
lected node from the open-list and add it into the closed-
list. We call it n.

Step 6 If n is a final configuration, the trajectory is com-
puted by tracing the parent pointer pp from n to s, and
the searching process ends successfully.

Step 7 Compute the set of the nearest neighbor of the
node n and determine the descendant of n in the search-
ing tree. Make a list M which store the collision free
descendant of n.

Step 8 Find elements of M which do not belong to the
search tree T, and let n be their parent node. Delete the
remainder of nodes from M and in regard to the deleted
node, if the pathcost from s on the previous searching is
higher tkan this visiting, let n be their parent node ~nd

update the pathcost.

Step 9 Calculate the evaluate value of not deleted ele-
ments of M, and put them into the openlist.

Step 10 Go to the step 4

we assume the path cost between the neighborhood
of the node is always 1.

In step 8, the branch of the searching tree is mod-
ified. Figure 3 shows an example of the modification.
Our heuristic function does not content the monotone
restriction[7] which is required to find the shortest path

Root node

Modified
path

2nd
\\visit
S

/'Arc is
deleted

An example of the modification of searching

Fig.3
(Fig 3] tree.

efficiently, therefore during the searching a searched path
is not always the shortest one in free space. If there is
a node visited more than once, the branch of the tree is
modified so that the parent node is the nearest one from
the root node.

Simulation result of HGSL

Figure 4 shows the simulation results by the HGSL. A
4 d.of. articulated manipulator in 2 dimensional workspace
is assumed. Every axis of the configuration space was
equally quantized into 360 divisions. Figure 5 shows an
example of the environment for which the HGSL cannot
apply, because heavy back-trackings occured and config-
uration space became too large to store.

There is left some problem for the motion generation
proposed above.

e The end-effector tends to move very close to obsta-
cles.

e Back-track works efficiently, but when the back-
track occurs, there is a possibility that calculation
cost may grow.

(b)

) Examples of simulation of the HGSL. (a) Ini-
[Fig4] tial posture of manipulator and goal poiut. (b)

Planned motion.

611

(b)

An example of the environment for which the
HGSL couldn’t apply. (a) Initial posture of ma-
nipulator and goal point. (b) Searched postures.

[Fig.5]

A heuristic search algorithm based on
local and global information

As shown in the simulation result of HGSL, the gen-
erated motion may not be safe, since the path planning
is only based on local information. To cope with this
problem, we take global information of the working envi-
ronment into consideration.

Global path

The global information for collision avoidance is given
as a safety path of end-effector. We use a graph called
the Safety first graph’ for a candidate of desired path. It
is a graph whose arcs are lines of intersection of any two
safety first planes and nodes are points of intersection of
two arcs. Subgoals are the nodes on the shortest path
in the graph between the initial and final points of end-
effector. Since subgoals lie in the middle of obstacles, the
end-effector can approach safely to the subgoal. Figure 6
shows an example of subgoals.

HGSG (Heuristic graph search based on global and
local information for the collision avoidance)

Step 1 Compute the safety first planes and the safety

first graph from geometric model for the working envi-

ronment, and let : = 1.

Step 2 Execute the HGSL algorithm from step 2 to step 8
to find a trajectory from the current posture to a subgoal

Subgoals on the desired trajectory along the

[Fig 6] Safty First Graph.

SG;.

Step 3 If ¢ # N | let the trajectory put into P;, and
t i+ 1. If{ = N, connect all trajectory from P; to
Py_; and the searching process ends in success.

Step 4 Go to the step 2
Simulation result of HGSG

Figure 7 shows a planned motion using the HGSG.
The environment for experiment is the same as for the
case of the HGSL. The path of end-effector has improved
in safety as compared with that of the HGSL. Figure 8
shows another example for which the HGSL could not

apply.

——

(2)

N L

(b)

Examples of simulation of the HGSG. (a) Ini-
[Fig.7] tial posture of manipulator and goal point. (b)

Planned motion.

An simulation result of HGSG in the environ-
ment for which the HGSL cannot apply . (a)
Initial posture of manipulator and goal point.
(b) Planned motion.

[Fig.8]

Estimation of the amount of computation
and the efficiency of heuristic function

For the collision avoidance problem, the amount of
computation becomes an issue. Since the dimension of
the search space is large, memory explosion or computa-
tional explosion happens. The amount of computation of
a heuristic graph search are estimated by following fac-
tors[6].

e The number of nodes to be expanded to find a path
(efficiency of heuristic graph search) .

¢ The amount of computation of heuristic function.

In the following section, we estimate the first fac-
tor from several experiments. And the second factor is
computed by summing up the amount of computation in
the collision detection, computation of heuristic function,
and data management.

The efficiency measure of heuristic function

In general, the performance of heuristic function of
graph search algorithm depends on application domain,
and it is difficult to describe the performance of search-
ing. Here we apply the "penetrance”(7] as an efliciency
measure. The penetrance P denotes the sharpness of fo-
cusing upon the goal. It is defined as :

P=L/T (2)
where L is the length of generated path, and T is the
number of generated node as a candidate of the path. P
We examined it by the simulation studies of HGSL and
HGSG for 10 cases of different workspace.

Figure 9 shows penetrances of experiments. Figure 9
shows settings of the workspace and planned motion of
HGSL and HGSG of simulation. There is almost no dif-
ference in the searching performance between the HGSL
and HGSG. In the almost of all cases, P is close to 1.0
and it indicates that trivial search is less.

Computational cost
for an expansion of searching

We estimated the growth of computation in regard to
the complexity of workspace and the number of links. If
the length of the planned path does not vary, the compu-
tational cost depends on the cost to improve the search
for one node. Therefore we examined the cost for one
node expansion of searching. The factors we considered
are as follows: the degree of freedom of manipulater d ,
the number of edge to describe the environment model e,
the number of face of environment model f, the number
of links for calculation of distance from middle plane in
heuristic function [, and the depth of search tree k. Their
orders are estimated as follows:

613

—

1 2 3 4 5 6 7
Experiment
[Fig.9] Penetrance of each experiment

The number of additional node o(2%)
The duplication detection with ancestor O(k)
node
Sorting in order of evaluation value O(2? . d)
by the quick sort algorithm
Existence check in the searching tree negligible
by the hashing search
List insertion O(d)
by the binary search
Collision detection O(e-f)
Computation of heuristic function o(l- %)

Therefore total cost for one node expansion is estimated
by

2¢.(0(e- FY+ 00) +0(k)+0(2* - d) + O(d)

Consequently from this estimation, the number of
d.of. of manipulator d becomes the largest factor. But d
is at most 6 or 7, the number of faces practically becomes
important.

Conclusion

A collision avoidance algorithm using heuristic graph
search and global subgoals was presented. As the pene-
trance in the result of experiments showed, a trajectory
for manipulators can be searched efficiently basing on
the heuristic function. But there were cases to which the
method couldn’t apply. Also, when HGSL method was
applied , the manipulator tended to move very close to
the obstacles. We coped with this problem to use sub-
goals on global path for the end-effector. We could verify
the fact that a use of subgoals reduce the depth of back-
tracking in the search process and save the computational
cost using simulation study. Since the algorithm is inde-
pendent of the types of manipulator ,this method can be
applied to any kind of manipulators.

reference

[1}] O. Khatib,and J.F.Le Maitre, ”Dynamic control of manip- [5] H. Hirukawa, and S. Kitamura "4 collision aveidance al-
ulators operation in a compler environment”Int. Proc. of gorithm for robot manipulators using the potential method
the 3rd CISM-IFToMM,pp.267-282 and Safety First Graph”,Proc. of JAPAN-USA Sympo-

(2] T. Lozano-Perez, "Automatic planning of manipulator sium on Flexible Automation,JAACE-ASME, pp. 99-102
transfer movement,”, IEEE Trans. Syst. Man Cybern., [6] P.Tournassoud,and B.Faverjon,”Learning models of ma-
Vol.SMC-11, no.10, pp.681-698,1981. nipulator displacements in Configuration Space”, Proc.

[3] T.Hasegawa ,”Collision avoidance using characterized de- 1988 IEEE Int. Workshop on Intel. Robots and Systems,
seription of free space” Proc. ’85 1.C.A.R. 1985, pp.69-76. pp. 151-156

[4] K. Kondo, A simple motion planning algorithm using [7] Nils J. Nilson, ”Principles of artificial
heuristic free space enumeration”, Proc. 1988 [EEE Int. intelligence”,Springer- Verlag,1982.

Workshop on Intel. Robots and Systems, pp. 751-756

e

L2180 T2217 time=2}’23"

[

L=158 T=180 tiwes13707" L2324 T=34 times1'03" L7188 T=1B8 tiae218'23" L=83 72120 time=10'527

)

HGSL HGSG

[Fig.10] Planned motion of each experiment

614

