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for selecting weighting matrices in

linear discrete time quadratic optimal control problem (LQ-problem) is proposed. In

LQ-problems, the quadratic weighting matrices are usually decided on tria! and error

in order to get a good response.

weights are decided in such a way

located in a desired region for good

But using
that all poles

responses

the proposed method, the quadratic

of the closed loop system are

as well as for stability and

values of the quadratic cost function are kept less (hen a specified value.

1. Introduction

The closed-loop system constructed by utiliz-
ing an LQ-problem has some merits ( Safonov and
Athans, 1977;Kobayashi and Shimemura, 1981 ). But,

vhen we construct a closed-loop system by utili-

zing the LQ-problem, the weighting matrices of
the quadratic cost function must be decided
by trial and error to get the good responses,
because only very little 1is known about the

relation between the quadratic weights and the

dynamical characteristics of the closed-loop
system ( Harvey and Stein , 1978 ; Stein, 1979 :
Francis , 1979 ).

of a

The dynamical characteristics

linear system are influenced by the

location of poles

of the system. Therefore to

get good responses, it is necessary to locate

all poles in the desired positions. But we know
that it is sufficient to place all poles in a
suitable region instead of placing them in their
respective desired positions.

In this paper, we give a new method of selest-

ing the quadratic weights in discrete time 1Q-
problems by which all poles of the closed-loop
system can be located in the specified region

for good response as well as for stability. In

regard to this subject, there have been pub-

lished many papers ( Mori and Shimemura, 1980 ;
Furuta and Kim, 1987 ; Solheim, 1974 ; Fujinaka
Sugimoto, Yamamoto and Katayama, 1988). But, these
methods have the problem that we do not know for
the resulting optimal
In this

closed-loop system the

cost function. paper, we Dpropose a

method to design a closed-loop system with all

poles placed in the specified region, as well as
to keep the value of a given quadratic cost
less than the

system constructed by this method has the merits

function specified value. The

of an LQ-problem as well as a pole assignment

problem and holds down the value of a given
quadratic cost function. Conceptually this deci-
sion method may be considered to be derived from
the so-called inverse optimal control problenms.
methods of
determining quadratic weights have been reported
by Kawasaki and Shimemura ( 1981, 1983,1988 ) in

which only pole

In continuous time case, similar

locations of the closed-loop

system are considered

2. Problem formulation

Now we consider a linear discrete time multi-
variabe system (1) and a quadratic cost function
(2).

x(k+1)=Ax (k) +Bu(k) (n



x>
J(U)=k§§0{x(k)TQx(k)+u(k)rRU(k)} (2)
where A and B are nXn, nXr constant matrices, @
and R are nXn, rXr positive definite symmetric

matrices respectively, x(k) is an n-dimensional
u(k) is
and pair (A,B) is a controllable pair.
Then it is well known(Kwakernaak and Sivan, 1972)
that which minimizes J(u)
subject to system (1) is given by the feed-back

control law

state vector, an r-dimensional input

vector,

the optimal control

u(k)=-Kx (k) (3)
with the optimal feedback gain
K=(R+BTPB) “'BTPA (4)

where P is the maximal solution of the algebraic
Riccati equation

P=ATPA-ATPB(R+B"PB) " 'BTPA+Q . (5)
OQur problem is to decide quadratic weights Q
which give the optimal feedback gain K satisfy-
ing the following condition :

1) Kk € K

2) A(A-BK) €T

3) Jg(w) = M
vhere K is a set of optimal feedback gain, T
is the specified region for a good response as

wvell as for stability ( Fig.1 ), Jg{u) is the

quadratic cost function with (Q R)=(Qa,R), and
M is some realizable positive number to satisfy
the 2) and 3). X (4) is of

eigenvalues of matrix A. In the next section we

condition a set

propose the method of deciding quadratic weights
Q in the auxiliary performance index (2), which
guarantees the condition 1), 2) and 3).
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Fig.1 A desired region of closed~loop
eigenvalue locations

3.Preliminaries.

3.1 Some preliminary Lemmas.

In this section, a new method of deciding

quadratic weights of LQ-problem is given.

showing the result,

First,

equation (5) and of Liapunov equation
Pn=ATPuA+Qu .

Lemma 1 (Kodama and Suda,

Before
we prepare some preliminary
lemmas. we consider solutions of Riccati
(6)
1978)
Let Py be a solution of equation (5) with Q=Q
and P, is one with Q=Q,. If Q22Q(, then Po2Py.
O
Lemma 2 (Kodama and Suda, 1978)
Let Q=Qp=0 in equation (5) and (6).
asymptotically stable,

If A is

then equation (6) has a

‘real symmetric positive semidefinite solution Py
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vhich satisfies Pp=P20. d
Lemma 3 (Amin, 1984)

Let A(=A-B(R{+B"PyB) 'BTPA ,  where Py is a
solution of the equation(5) with (Q R)=(Qy,R¢):

Py=ATPyA-ATPB(Ry+B"P{B) "'BTPA+Q,
and, Az=A;-B(R2+BTP,B) 'BTP,Ay, where Py is a
solution of the equation (5) with (Q,R)=(Qs. Rs)=
(Qz, Ry #B7P{B):

Po=A{TPoA1~Ay TP2B(Ra+BTP2B) "' BTPoA; +Qs
Furthere Ag=A-B(R(+BTPB) 'BTPA , where P is a
solution of the equation (5) with (Q, R)=(Q{+Q,,
Ry):

P=ATPA-ATPB(R+BTPB) "!BTPA+Q, +Q>
Then A.=Ap J

Lemma 4 (Shin , Kawasaki and Shimemura , 1988)

Py Po . L e
[f P = T is a positive semidefinite
Py P3
symmetric matrix , it satisfies the following
relation :

Range(P3) 2 Range(P,T).
Lemma 5 (Shin

O

Kavasaki and Shimemura , 1988)

Py Pe . . e
If P = T is a positive semidefinite
P2" P3
symmetric matrix , it satisfies the following

inequality :
Pi-P2P3*PoT20

vhere P3* is a pseudoinverse matrix of Pj.

P, # 0,

that

is , when it satisfies the following

equations:



PoP3*P3=P,

P3P3*P3=P3.
Lemma 6
Let A4, A2, °*+, 2, be the eigenvalues of

be
a symmetric

A inside the unit disk, and &, &2 -, &n
If

matrix Q of equation (5)

the corresponding eigenvector,

positive semidefinite

satisfies the following equation
Qr=10,i=1.2,---.n

The closed loop system matrix Ac

(n
A-B(R+BTPB) !
BTPA formed with the maximum solution P has the

eigenvalues A ; and the corresponding eigen-
vector (.
Proof: Let H be a discrete type Hamiltonian

matrix given by
A+BRT'BTAT g
_AT—IQ
from eqation(8) and the definition of eigenvalue

and eigenvector, it follows that

- [ ¢ l] - [ e i]

0 0
It is well known (Kimura and Inoue, 1978 ;Pappas
et al., 1980) that the optimal closed loop poles

of H inside the
[f the absolute value of A ; is less

_BR-iBTAT-l
AT-]

(8)

(9)

are given by the eigenvalues
unit disk.
than 1,
eigenvalue of the closed loop matrix A, and ¢ ;

O
with pole

the equation (9) shows that A ; is an

is the corresponding eigenvector
3.2

assignment problem

Property of quadratic matrix Q

In this section, we will give some proports
Let

of matrix

about

be eigenvalues
(i=1++,n) be the corresponding
and £, (i=1,+-,n) be
the corresponding left eigenvectors.

quadratic weights

Ay, (1i=1,++n)
A and ¢,
right

pole assignment.

eigenvectors

Therefore,

we consider the quadratic matrix Q

the closed loop system transform-

weighting
which realize
ing only p poles. Then
forrowing relation:
(A-B(R+BTPB)"'BTPA) ¢ ;=4 &
, (i=p+l, -+-,n) (10)
Let o ;, (i=1,-++,py). be real eigenvalues of the

from Lemma 6, we get the

matrix A, and a;xjB;, (i=l,---,ps, D1+2pp=p)
be complex conjugate pair of eigenvalues of the
matrix A. And let ¢; and v; * jw, be the

0
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corresponding
s;+ity
And we
T=[&4, Eo -, Ent.siaty, 52, ta, o7, Spa. tpe]
. (py+2pe=p) (11)
Then, we obtain the following Lemma
Lemma 7 (Solheim, 1974)
Let quadratic weight R be given

right eigenvectors. And £, ana
be the corresponding left eigenvectors.

defind the matrix T as follow:

If we choose
the quadratic weights Q as follow:

Q=TQsTT , QuERPXP > ¢ (12)
then it is possible to constitute the closed-
loop system which transform only p poles. And p

poles of being transformed are equal to poles of
the optimal closed-loop system (I",, TB) with the
quadratic weights (Qu,R) , where

I'o=diag(o 1, 02, v+, 0 p1, Ay, A, w00, Apa),

a; B;
Ay = [ ] (13E]
Bi a; |.
Lemma 7 gives a special type of quadratic
weights Q. which transform only p poles. However

we can consider other type of quadratic weights
Q which transforms only p poles. If there exists
other type of quadratic weights Q,
the of type (12)

transfer of p poles.

we can find
the

This is fact will be shown

in the following theorem

[Theorem 1]
Let ¥ be the set of the feedback gain F,
F=(R+BTPB)'BTPA ,

which satisfies equation (10), that is to say
U={F| A ¢=(A-BF) =2, L (i=ptl, =++,n)

s.t. P20 ,P=ATPA-ATPB(R+BTPB) 'BTPA+Q} (14)

And, let Q be the set of the feedback gain Fy,
Fa=(R+BTPyB) "'B'PuA ,

which satisfies

weights to obtain same

equation (4) with Lemma 7 type
quadratic weights Q, that is to say

Q={Fy | Fg=(R+B"P4B) "1B"PyA , Py=min(P)

s.t. P=0 ,
P=ATPA-ATPB(R+BTPB) "'BTPA+TQyTT) (15)
Then
¥=Q

The proof is given by the same method in (16) [

4. A design method of the closed-loop
system with Pole assignment

In this chapter, we consider the design method



a closed-loop system which satisfies the condi-

tions 1), 2) and 3). Fundamentally, this method
is the repeated application of the result of
Lemma 7 as p=1 (real pole) or p=2 (complex con-

jugate pair poles) until the condition 1),2) and
3) are satisfied.

Let o be one of the transforming real eigen-
values of the matrix A, and a+jB be a pair of
complex conjugate eigenvalues of thematrix A.
And let ¢ and vEjw be

eigenvectors. And 7 and st jt be the correspond

the corresponding right

ing left eigenvectors. From Lemma 7, we obtain
the following results. These results are genera-
lization of the results of Solhelm(1974) and of
Fujinaka, Sugimoto, Yamamoto and Katayama(19883).
[Theorem 2] .
a) For the

equation (16),

quadratic weights Q@ defined by
the feedback gain (4)
the real eigenvalue o to the realeigenvalue A :

Q=qn n' (16-a)

transforms

o 1 1
= — {(2a+ — )-{(o+ — )} (16-b)

d W A o
¥W=7"TBR BTy (16-c)
b) For the quadratic weights Q@ defined by

equation (17), the feedback gain (4) transforms
the complex conjugate pair of eigenvalues a*jAB
to the complex conjugate pair of eigen-values A

and A °:

Q=[st] §lst] (17-a)
5 - [qx Q2] (17-)
Q2 g3
And if we consider W defined by
LTRER
w=[‘ 2] (18)
¥ W3
=[s t]"BR'BT [st]
then ki, kg, q; and w; (i=1,2,3) satisfy the

following relation:
ki = {qq (wya+we B)+aa(wg @ -wa 8)+qa (w3 B
~wi B+2vea)+tla (1+a®+83) ) 4 (a?+8 7)1
(19)
ke = [(a193-02%) (wyws=wa?) +qy {(1+a ®)w+
B2wzt2la Bwa) s ((1+a®)wg+ B 2wy -
2a Bweb-2az {({B2-(1+a®)lwe+(wi-w3) @ 8)
+H{(1+a )2+ 44282 (a?-1)) (wyws-wp?))
*(a?+p?)7! (20)
where ky and kg

are coefficient of a quadratic

equation z2+k;z+kg=0 which has a solutionA +
A7Vand AL
Proof: Let A ; be the eigenvalues of matrix A-B
(R+BTP.B)"'B"P,A and ¢; be
eigenvectors. Then we obtain
{A-B(R+BTP,B) "'BTP,A) ¢ ;
=(A-BRT'BTAT U (P-Q)) £ =2 L, (2D
and from equation (5)
(P~Q) ¢ ;=ATP{A-B(R+BTP.B)"'B"P.A} £,
=L AP (22)
If A; is not equal to eigenvalues of
then, from (21) and (22), we obtain
Ci==(A 5 1-A)T'BRTIBT (A " I-AT) g (23)
We multiply 7y or [ s; t; 17 left hand side of
eq. (12) , and from Lemma 6
{47 T -0 TBRTIBT (A -AT) Ty i)
niTE=0 (24)

the corresponding

matrix A,

or

{To+ls; t;1T(X1-A)"'BRTIBT (A ;~1[-AT)!

(si 1@ (si t17¢ =0 (25)
¥e can obtain the result of Theorem 2 to calcu-
late the det{-}=0 of equation (24) or (25) which
is

det{1+(A -0 )"W(X; '-0,T) 1} =0,

det {1+ (A 1=A )" W(x 7 -A ) 1} =0

where

@i =B
Aii[ﬁi ai] ]

We obtained the method of deciding the quad-

ratic weights Q@ which can transform the closed-
loop pole via the solution of equation (5). Now

we give the formula to evaluate the inrement of

the cost function Jp{u) by a result of the
transform of a pair of eigenvalues. ¥e denote
up=-Kpx be the optimal control for Ja(u), with

Q=1Qp i.e. Kpg = (R+BTPpB) 'B"PgA and u=-Kx be
the optimal control (Q, R) = (Qg+Q;. R),where Q
is defined by equation (17). There we can obtain
the following main Theorem

[Theorem 3]

The value of gquadratic cost function Jg(u)
satisfies the following inequality:
A max ()
< + 2
Jo(u) = Jg(ug)+ i xg il —(a2+p2) (25)

where xg is an initial value of the state vector

x (k).

887



Proof: First, we solve the matrix equation
Py=A;"P{Ay-AyTPyB(Ry+BTP{B) 'BTP{A+Q . (26)
where Ay is a closed loop matrix A-BKg and Qy is
the weight
Lemma 3.
u(k)

in Theorem 2 and Ry is the weight in
We compose the feedback input
-Kqx (k)

-(R(+BTP{B) "'BTP{A{x (k)

From Lemma 3,

(2m)
we can obtain the following rela-
tion:

Jo (-Kx(k)) = J1 (-Kx(k))
=Jg(-Kpx(k)) +xp Py xg
SJp(-Kex(K))+ 1l xg Il 2Py

Then from Lemma 2,

(28)
the norm of left
and substituting the

selecting
eigenvector [ s; t; 1 =1,
matrix Q of Theorem 2 into the equation (5), we
obtain ’
A max(§)
1-(a?+B?)
This establishes Theorem 3

Amax(P) = (29)

O
Here, § of Theorem 2 is a 2X2 symmetric positiv
matrix. if q2 = 0 the

edefinite Specifically,

nTheorem 3 is

A max(qi, q3)

J <) + 2 30
a{u) = Jg(up)+lixp |l (a2+82) (30)
From Theorem 3, we obtained the value of incre-
q
Jalu) < Jplup)+ixpll 2 2
1-o0

This inequality
3.

In Theorem 2, we have given a quadratic weights
to transform the selected

is derived similarly to Theorenm

eigenvalue(s) to the
ment of the quadratic cost function. In case of
transforming a real eigenvalue, the correspond-

ing formula to eq. (25) is

Im
1
; AT - -"'-»4_._' .-\"\ .
/| RemsBRRe 2 g A
IIv \\I
: \ R
—1% a8/ |0 A+B} ! 1 Re
( , /,
.. —_ A
=

Fig.2 The substituting heart region
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specified position(s). From this result, we can
the selected
be the
specified region. For that purpose we substitute
the hatched region of Fig.1 by the Theart”
region shown in Fig. 2 ( R = A+B¥(Re(z)/ 12z ),

A, B aresome real numbers). For this case, we can

derive the condition under which

eigenvalue(s) can transformed into

obtain the following Lemma
Lemma 8 (Shin,
a)

o into the region of Fig.2 is

Shimemura and Kawasaki, 1989)
The condition to transform a real pole from

g
= — {(A+B+
q - {( Py

wvhere o, q and ¥ are given in Theorem 2-a)

1
) - (o+ — )
g

(31)

b) The condition to transform a pair of complex

conjugate pole from a £ jB into the region of

Fig.2 is

1 1
(R2+—§5)2~kg (R2+—R—2)+(k12—2kg—4) <0 (32)

where, R = A+B*(Re(z)/|z|.2=A or A*, and ke

and ki are given in Theorem 2-b). ]
Inconcluding the above discussions, we can

summarize the decision method of the quadratic

weights as follows.

[Decision method]

Step 1. (May be skipped in case of | A (A) | < 1)

Solve an LQ-problem for arbitrary quadratic
weights (Qy,Ry) selected from the demand for the
system's dynamical characteristics
P1=ATP{A-ATP{B(R{+BTP{B) 'BTP1A+Q,
and obtain a closed-loop system matrix Ay; = A-B
(Ry+BTP{B)"'BTPA and calculate a quadratic cost
function Jg(u(ke)).
Step 2.

complex conjugate

(33)

Choose a real eigenvalue or a pair of

eigenvalue which are outside
the heart region of Fig.2, and obtain the quad-
ratic weights Q utilizing Theorem 3 and Lemma 8.
Step 3.
tained in Step 2, obtain an optimal closed-loop
system matrix A;-BK;= A;-{-B(R,+BTPB) 'BTP;A, 4
where Ap=A, P; is the solution of the equation
Pi=Ai-1"PiAi~1-A; ¢ TP;B(R;+BTP;B) 'BTP;A; -y
+Q; (34)
and R;=R;_{+BTP;_(B. quadratic
cost function Jp(u(k;)) and a value of increment
Al

Utilizing the quadratic weights Q ob-

And calculate a



Step 4. Repeat Step 2 and Step 3 so that the all
poles enter the heart region of Fig.2. The least
upper bound
then
Jelu(k)) S Jg(u(kp))+Z A J;

value of quadratic cost function is

(38)

There are maybe cases, where the condition 2)
and 3) can not be satified simultaneously. In
such cases, the uppert bound M should be in-
creased.

5. Numerical example

In this section the design procedures given in
the

numerical example

previous sections are illustrated by a

¥e consider a discrete-time
system given by
x (k+1) =Ax (k) +Bu (k)

0.5 0 0 1
A= 0 1-2.2 . B= 1 (36)
0 1 0.6 1

The open-loop poles of the system are (0.5, 0.8%
j0.4}. And we omit the Step 1, because the open-

loop system satisfies the condition | A (A) | < 1
viz., quadratic costfunction Jg(u(kg))=0 , and
objecting quadratic cost function Jp(u(k))=6.

And
by

the heart region which we desired is given

R=0. 140. 3*Re(z)/ | z | (31
Then all poles are outside of the heart region
in Fig. 2. First, we consider transforming a real

pole, and a value of increment AJy being less
than 3 and quadratic weights R = I. Then from
Theorem 3 and Lemma 8, we can obtain q=3. Then
utilizing q=3 at Step 2 and Step 3, we can ob-

tain the closed-loop matrix Ay. The closed-loop

poles of the system Ay are located {0.1342, 0.8

+3j0.4 ) and a value of increment AJy = 2.7238
Next,

poles,

ve transform a pair of complex conjugate

and a valueof increment AlJ,
than 3. If q»=0, then from Theorem 3 and Lemma 8
we can obtain q1=0.2, q3=0.1. Then utilizing qi=
0.2, q3=0.1 at Step 2 and Step 3,
the closed-loop matrix Ap. The closed-loop poles
of the system Apare located as follows:{ 0.1342,
0.25+30.125 } and a value of
0.41004.

being less

we can obtain

increment Al =

889

6. Conclusion

In this paper, we have proposed a decision
method of determining quadratic weightings of an
to locate all closed-

LQ-problem poles of the

loop system in the specified region and to keep

the value of the quadratic cost function less

than the specified value.
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