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Abstract

Most of systems are included nonlinear
churacteristics in practice. One might be faced
with difficulties when problems of nonlinear
systems ace solved. Tn this paper we prescnt a
formal linearization method of nonlincar
systems by using Lthe trigonometric Fourier
expansion on the state spacce considering easy
inversion. An error bound, an application, and
a  compensation of this method are also
investigated.

1. Introduction

When systems are nonlinear, we should need
lincarization for adapting the lincar system

Lhcory. There are scveral methods af
linearization though they are not for numcrical
computer methods 1177037, It is significant in
practice to lincarize nonlincar svstems
with high accuracy by computers.

n this paper we prescnt a formal

lincarization method of nonlinear systems based
on the trigonomctric Fourier expansion on the
state space considering casy inversion.

A nonlincar system S{t)=Ax(t)+f(x(t)} (+=d/dt)

is cunsidered. Define that lincarization
funclion $(x) which is comprised of sequence
of trigonometric functions { x, sinlrx),cos(rx)
ir=1,2, -+ - N}. #{x) is expanded in Fouricr

series so Lhat G{x{L) =B ¢ {x)+C is acquired.
Thus the given uonlincar system of x{t) 1is
transformed into the lincar system of $x).
The inversion is casily carrvied out by ~eey={1
0 0 -+ 0} #ix{t)). The cffectivencss of the
wethod is confirmed through numerical cxamples.

Moreover we investigate an error bound of
this linearization. A nonlincar cobserver is
synthesized as an application of the method. A
compensation of the lincarization 1is also
studied.

2. A Formal Linearization

We consider a scalar system, for a vector

system 1is straightforward. Assume that a
nonlinear system is given as
Lk (=A% (D)+(x (L)) (-=d/dt) 2.n

x(0)=xo€ {0,292 |CR

where x is a state variable defined on {0,290 ],
R is the set of all real-valued, f is a
nonlinear square integrable function with the
first continuous derivative.

We here define a formal lincarization function

_ L n 2 2n
X )= sin-=- 3 oin 2% ‘
$(x)=(x g K WX T X ush X
VT N7 '
WX o f”XJ

(X $i(x) d2(x) $3(x) #4(X)
Gaen (X)) gan(x)I T, (2.2)
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It is called the Nth-order linearization

function. In this case the

inverse

transformation #~' is easily carried out by

x=(100 -0} ¢#(x),

We transform the system 2, into
syvstem:

Za: ¢ (x)=Bg (x)4C
B (x(0))=4(x0)

as follows,
From Egs.{2.1) and (2.2},

f(x)=ga(x)

BooCoOzPnlE x0Tk

:!'Ql‘ (fm% XIAXHI(X ))=g:0 -

5 B O R I
¢2r(x)—dt“59 x_(dxm!?

. .
X)x

(2.3)

a linear

(2.4)

(2.3)

(x) (2.6}

=5 )T XX (R D= (k). (27D

Expand each g {r=0,1,2, -+ 2N} in
series:

‘oo
Su(x)=§la. (X )tar o
where

1A
. u—'zb'fa g (x)dx

a,;:%-ﬁ’m(x)¢u(x)dx

Fouricr

(2.8)

(2.9)

(2.10)

By truncation at r=ZN, we have the N-th order

system with respcct to ¢

. . W
p{x)=| X W= AX+Y as v pv(XMtao o
d 2!
a—tsm%x “‘(Xl VE (X )ra e
d_»n al
e T X k}.-l(!lz cpa(X)taz e
: 1
: i
d_ N Lo
vdtsanx‘ &‘%‘azl.w v (X )+aon-1 e
d \l ‘k?I.A
acﬁ‘-fx !U'Z:‘Q:u V(X )taan o
=Bg (x)+C (2.1
where
B=,/A Aa Qa3 2u C= [as ¢
0 a. LRI * SIS 21) A0
0 aen i -+ @ew 2w - ETEE
Thus the lincar system Eq.{2.11}, namely

Eg.(2.4), is obtained.

In the next, we study the error trajecctory

by this truncation.



3. Error Bound

Rewrite the approximated equation of

(2.11) as

F(x)=B3 (x)4C. (3.1)
In case of no truncation, it follows that

#(x)B@ (X)+C+Ru. 1 (X) (3.2)
where

a0
R”"(x)=33_“.lc‘n¢.(x) .3
av=0ao « @i« v @ k),

From Eqs.{(3.1) and
error {¢ - 3) is

(8 (x)-3 (x84 (x)- 3 (x N#Ruc 1 (x). (2.0)
Integration yields
X(t)-X()=C10 ...

{(3.2), the dynamics of the

0 £ o8-t Ru (x)dT

(3.5)
with the initial condition #(X0)=8(x4),
Thus the error bound becomes

I % (D-R (L)
ST QIO e 03 1 £em U R (x) DdT

2 Aol ey (3.8
s f{Re. 1t . (t=s0) 1.7
4, Numerical Examples

We illustrate the use of the method. Given
a nonlinear system

Tk (=X (D+x2(t) “.1n
x(0)=xs€[0,22 JCR .,
From Eq.{2.11), when the order of ¢ is N=2,

the coefficients of the linearization are as
follows. The other cocfficients are similarly
obtained.
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Fig.l is the numerical results in case of Xy
=0.8 and ¢ =0.42 by computer. X{(t) is the
trajectory by the linearization of Eq.{2.11)

when N is parameter (N=1~5}. x(t) is the true
value which is the trajectory of the original
equation (4.1), Fig.2 is the integration of the

square error
0= L(x(T)-R(xNT .

For comparison, Fig.3 shows the trajectory %(1)
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by the lincarization method based on Taylor
expansion in which ¢ (x)=[x,x2,. ., x¥"]" @5
Fig.4 is J(t) of Eq.(4.3) in case of Fig.3.

Consider another nonlinear system
2tk (t)=2sin(1.2x (1))
(A=0, xe=0.3, 9=1,28).

Fig.5 is the numerical results of x(t) and R(t)
when N=z1~5. Fig.6 is J(t) in this case.

These results show that the accuracy of
our linearization is improved as N increases
and is effective in wider region than by
Taylor expansion.

5. Observer

As an application of the linearization, we
gsynthesize a nonlinear observer.
Assume that a nonlincar system with measurement
is given:
Dynamical equation is the same as Eq.(2.1)

R(=Ax (+(x (1))  (x(0)€f0,22]). (5.1)
Measurement equation is
y ()=Hx (L)+h(x (1)) (5.2)

where y is real-valued mcasurement datum, and h
is a nonlinear square integrable function., f(x}
is expanded in Fourier series by the way of
Section 2 so that the linear equation of (2.4)

#(X)=B (x)+C (5.3
is derived. In a similar way, h{(x) is also
expanded in Fourier series so that we have

y (t)=D¢ (x )te (5.4)
where

D=CH, Buverey B, v, Ban)

-.L 28

es3g I, h(x)dx

1 2t

BFT."’ h(xX)g (x)dx .

The well-known linear observer theory'®’ is
applied to the lincar system of Egs.(5.3) and
(5.4). Identity observer, for example, is

A A

3 (=08 (LHCH(y (1)-D B (1)-c)

X(W=C100 - 0) (O (x@&l0,22D).

K is appropriately chosen S0 that all

eigenvalues of the matrix
real parts.

(B-KD} have negative

6. Compensation
The linearization of Section 2 is an
approximation. As shown in Section 3, the
approximation error may diverge as t-sow, We

here propose a compensation approach of this
linearization. In this compensation, the linear
equation is the same as Eq.{(2.11) at t=0 but
x=0, at t=oo.

Assume that the system is described by

X (E)=ACX (L)-w)+f(x (1)) (6.1)
where w is a steady state value:
X (o0)=f(w)=0
From Eq.{(2.11) we have
# (x)=B (x)+C (6.2)
where
B=(A ao X 2n = fae o -AW
0 a1 '+ @i 2w ai o
0 azn ETEL 2N



Define that
P(x)=( (X)) g2(x) #3(x) da(x)

pan-1(X) Ban(x)) "

V(x)= (@11 -y 2w w(x) fa, a
Qer y 't d2n 2 A2n 2
=By (x)+C
B'=B-e1 (& 20, I:identity matrix) (6.3)

Choose ¢ so that all eigenvalues of B' have
negative real parts. An approximation of
Eq.(6.3)

P (x)=B" » (x )L (6.4)
goes to -B'-!f at tzw . AS t—ew,

kaa(x e E as cu(x)van s (6.5)
approaches

n=(@e 1 - Ao zn J(—E"'C‘){a'o

instead of x{ ® }zw., We therefore compensate it
as follows:
2n 7
X=A(X-W)tZ aq (X )tao TR (x-X0)(6.6)
K=t L]
which is the same as Eq.(6.5) at t=0 or x (0)
=xXe i8 X=0 at t=o or x{ o )=w, and is used a
proportional allotment in region betwecen Xe¢ and
w. Combining with Eqs.(6.4) and (6.6), we have
the linear system compensated in asymptotically
stable:

#(x)=B (x)4C (6.7
where
B=A-‘%(—° do v &g 2N ‘;C= rXuo-AW*J’_h;::
0 X I mE A 2w i [> SN ]
Pl
0 Xaw | ' dan n-e; [aens

Fig.7 is the numerical results which is
compensated the linearization system of
Eq.(d4.1) (or Fig.l) Ly Eq.{(6.7), where € =1.0.
This shows that Lhe compensated linear system
goes to the stcady state w=0 as t—oo .,

7. Conclusions

In this paper, we have proposed a formal
linearization considering easy inversion of
nonlinear systems. Using the proposed method,
the problem of nonlinear systems are reduced to
the problem of linear systems.

To demonstrate the effectiveness, we have
illustrated the simulation on nonlinear example
systems. The accuracy of the nmethod presented
here is better than of the previous one based
on Taylor expansion in wide region and is
improved as N increases.

We have also proposed
of the linearization method and constructed
an observer of a nonlinear system for
demonstrating how to apply the method.

a compensation
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