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Abstract: A Digital Signal Processor (abbreviated to DSP) is used not only for digital

signal processing but also for kinematic controls[1]. Then applications to these fields

are expected to be developed. We propose a function calculation method on DSP which

occupies no table memory. By using these functions, more fast or more accurate control

will be achieved without using function table.

1.INTRODUCTION

DSP is developed in order to process signal.
Recently, DSP tends to be used in various fields
instead of micro processor. So, DSP is used not
only to calculate multiplication and summations, but
also to calculate transcendental functions. But the

suitable calculation algorithm for DSP is not

considered. Until now, transcendental functions are
implemented by table look~up method. In these
cases, to calculate these function require a large
table memory on DSP. Therefore we can’t employ
this for than two

method calculating more

transcendental functions or calculating
transcendental functions in high accuracy.

There are many well-known algorithms. Among
them CORDIC (COcrdinate Rotation Digital Computer)
algorithm is the most popular for micro-processor.
But we can not apply this method on DSP, Because
DSP’s internal structure is far more complex than
that of micro-processor and this algorithm can't
make use of hardware capacity. Moreover, since
instruction code

multi-pipelined is employed on

some DSPs, CORDIC programming on DSP which
is not

CORDIC

adopt multi-pipelined instruction code

necessarily desirable. As the results,
algorithm is not efficient for these calculations.

In this paper, we describe the calculation method
of transcendental function using multiplier. The

shorter the total computation time is, the more

962

desirable processing is. So, we espoused chebyshev

polynomial approximation. By using chebyshev

polynomial approximation, functions will be
computed without using table memory on DSP.

We implemented on MSM6392. MSM6992 is a second
generation DSP, developed in OKI electric Industry
Co.,LTD.

Its data is expressed with 16 bits as

mantissa and 6 bits as exponent.

2.Calculation of transcendental function

This section describes the calculation method for

transcendental functions. Subscripts m and e of

the wvariable denotes mantissa and exponent,
respectively. That is, if
X =Xn 2 7,

X

exponent part of X. X . is normalized in one of

~ Mmeans mantissa part of X, and X . means

the following three region
0, 93X mw<1l, O,
1. 0O0<XawsS-0, 5

and

X m 0
2-1.Division
Suppose that X is a divisor and Y is a dividend.

Then division Y by X will be expressed with the

form
Y 1

—— I — Y ™ 2 Yomo- oA (1)
X X m



The exponent of the result of the division is
computed by using DSP’s scaling function.

Mantissa Y w» X w of the division is derived
1 /X 1 / X nis

chebyshev polynomial

to
the

by multiplying Y =

obtained by using
approximation. At first, the value approximated by
chebyshev polynomial is obtained. And assign the

value to Z .. Thatis

Za2%21/Xn (2)
We derived Z o in the following polynomial.
Zo= 2 CuX" (3)
C o = 5.656846 C = = 10.64818
C ., = -11.75737 C a2 = -3.549393

In order to minimize error, we employ the newton
iterative procedure expressed with the formula
Z (2.0 -~ X » + Z o) Z o (4)

. is more accurate value than Z . Only a few

=

Z
iteration practice will achieve most accurate value
regarding to the number of bits.

The above procedure reguires from 34 to 36 steps
on MSM6992. This means that division will be

practiced within 4.0 u sec.

2-2.Sinusoid

In calculating sin(X) and cos(X), we employ

mini-max polynomial approximation[2] since these

functions is periodic. Once sin(X) is calculated,

cos{X) will be calculated too. Because cos{(X)

satisfies the following relation.

sin(X + n / 2 )

cos(X) (5)
So we can get cos{X) by executing sin(X+ = /2).
Therefore we need to obtain the polynomial
approximation only for sin(X) in the domain [ — =z
/

approximation polynomial

MSM6992,

2]

L ]

n /~ 2 ]. The enough order of chebyshev
is 7 in the case of
Though it's high order, sin(X) is odd
function and even-order terms of the polynomial
equal to zero. Therefore, the calculation complexity
The approximation

is not so high in practice.

polynomial is as follows.

sin{ 7 /20 X )= . C axer X 7% (6)
C = 1.570794852 C »=0.079487663
C 5=-0.645920978 C -=-,004362476

The above procedure is achieved under the
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assumption that X satisfies { — n / 2, n /~ 2 |
since sin({X) is periodic. So X must be normalized in
theregion{ ~n / 2, n / 2 1

The step number of the above total computation is
at least 24 steps on MSM6992. The total program
increase

steps required for sinuscoid calculation

proportionally with arguments.

2~-3.Tan(X)

Tan(X) takes from the value - @ to oo when x is
- n / 2 to m / 2. Then such

function can’t be approximated with polynomial of

changed from

order 9. The approximation for tan{X) is achieved
by 9 rational function of order 9. There are some

rational approximations. We emplorj"“ed the continued
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fraction approximation among them. But there is one

problem. To calculate continued fraction
approximation requires many division operations.
Division on DSP is not so easy in comparison with
multiplication. Then the continued fraction
approximation of tan{X) is translated to a rational
function whose divisor and dividend are expressed
with polynomials. Employing this formulation, the
number of division is decreased to only one. The
corrected formula is as follows.
X*-5.46059X3-22.09259X2+91.70779X

tan{X)= — (7)
8.18130X%-35.94090X%-22.11515X+591.71003

The calculation of the rational function with
MSM6992 needs at least 61 steps. We show

calculation error in Fig.3.

2-4.Atan2(Y,X)

Arctangent function (abbreviate to atan2(Y,X}) is
expressed with 2 arguments X and Y. We describe
the relation between them in Fig.4. On the other
hand, we define the arctangent function with one
argument (abbreviate to atan(Z)). The value
atan(Y,X! is in only the region { — n, n ]. The
value of atan(Y,X) is symmetrical with the signs of X
and Y. So, considering the signs of X and Y, it is
necessary to express atan2(Y,X) with signs of X and
YIf X >0 and Y 2 0, Z =Y /X is
positive or zero. Now we can express atan2(Y,X}
with atan(Z}if X > 0 and Y 2 O.

Atan(Z) satisfies the following formula

atan(Z)= -z + atam-z—-i (8)

4 +1

By (8), the region [0, o ) of the value Z is
transformed to the region [-1,1]. Then, we
approximate atan(Z) by the mini-max approximation
in the region [~1,1]. The approximation polynomial is

expressed as follows:

E Coaw X 27 9
C 1=0.9998660 C -=-0.0851330
C ==-0.3302995 C 5= 0.0208351
C 5=0.1801410
Though coefficient of the mini-max approximation
polynomial is difficult to calculate, we employ the

method proposed by [2].

But in practice, the influence of difference
between the mini-max approximation and the
chebyshev approximation is not so far in
comparison with influence of DSP’s word length.
Consequently the chebyshev approximation can be

used instead of mini-max approximation.

v

Fig.4. The relation between (X,Y) and atan2(Y,X)
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2-5.Square-root
Suppose that argument of square~root function is

X=X~ ¢+ 2 *° Then,
a right shifting of X .. If the least significant bit

J~ 2 *° is computed by

of X . is zero, square-root of 2”*° is obtained by a

right shifting. Otherwise, we must multiply J 2

to the right shifted data. These discussion is
expressed as follows.

VXp» 20672 X.:even
JSX= (10)

VX022 ¥ 0dd

{X]} denotes the Gauss’ notation. But, this procedure
is hard to realize on MSM6992. Because bit sequence
translation from the mantissa to the exponent is
difficult to implement. Then we have to use table
memory for giving J 2**., However, if DSP has a
assembly command which make mantissa bit
sequence move to exponent bit sequence, we need
not to use table memory.
We 4th  chebyshev

employ approximation

polynomial for calculation of the mantissa as follows.

SXwE ECuXar (1)

W=

o= 0.2308020
C = 1.290867

C == 0.4825752
C 4=-0.115309¢

C ==-0.8889398
The square-root of X can be obtained by the
product of J Xm» and J 2%°.,

2-6.Exp(X)

Exponential function{ abbreviated to exp(X) ) is
derived in the following.

At first, exponent X. is separated from X. If X,
50,

approximate exp(X) in the domain [-1,1]. The value

X exists in the region [~1,1]. Therefore, we

can be calculated with chebyshev approximation.

-]

exp(X)=
Co= 1.000061
C, = 1.000000

C2= 0.4991913

KZ_D CuX"
Ca= 0.1665497
Ca= 0.04379272

Cs=0.008635521

{12)

The approximated value is assumed to be Y.

If Xo > 0, exp{Xmn) is calculated by the above

method because of definition of X . Then, the 2

*¢*—th powers of the value exp(Xw)

is exp(X).

Exp(X) is derived in above procedure.
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The step number required for this procedure is at

least 33 steps on MSM6992.

2-7.Log(X)

We assume log(X) as natural logarithm in this
section. Log(X) is expressed with
log{X)

= jog(Xwm+2%°)

= log(2) - {log2(2Xm)+Xe—1)
Since log(2) is constant, log(X) is derived after
logz(2Xw) . So,
logz(2Xwm) with chebyshev polynomial. The reason

(13)

calculating we approximate
function

that

why we approximating as
log=(2Xm) of logz(Xw)
theoretical error given by logz(2Xw) is smaller

of logz(Xm). We

employ

instead is the

than that show polynomial

approximation in the following.

loga(2 X «) = X CuX* (14)
Co=-2.498353 Ca= 5.008257
C.=8.058423  C.=-1.255051
C2=-8.313341

This implementation on MSM6992 needs 37 steps.
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3. Estimation for gspeed and error

We describe minimum step number and maximum
error in some limited region for these
transcendental functions in Table.l. We can see
that each function is calculated faster. Though it
takes more computation time in comparison with
table look-up method, it may be suitable in view

point of memory occupation.

Table.l. maximum error and minimum steps

function maximum error minimum steps
Y/X 8.0 E -5 3 2
sin(X) 6.1 E- 5 2 4
tan(X) 4.0 E - 4 6 1
atan2(Y,X) 7.0 E-5 77
square-root 5.0 E~-5 27
exp(X) 1.2 E - 4 3 3
log(X) 2,5 E -4 37

4. Conclusion

In this paper, we proposed the algorithms for
calculating transcendental functions on DSP. By
using the proposed procedures, we can conclude
that transcendental functions are calculated faster
on DSP.

These procedures proposed in this paper can be
realized on any other DSPs if floating point data
calculation can be practiced on these DSPs. In such
case, the order of polynomial must be chosen

carefully considering data bit length on DSP.
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