‘89 KACC 1989. 10. 27~23

Properties of Object Composition Operations for
Object-Oriented CAD Database Systems

Tae-Soo Chang' Katsumi Tanaka'
fGraduate School of Science and Technology, Kobe University
Rokkodai, Nada, Kobe 657, Japan
'Dept. of Instrumentation Engineering, Kobe University
Rokkodai, Nada, Kobe 657, Japan

ABSTRACT: In this paper, we introduce a recursively-defined natural join operation as well
as well-known object composition operations (union, intersection) for composing CAD database
objects. Then, we will discuss how to realize these operations by the message passing computing
mechanism. Next, we will discuss what kind of behaviours (methods) are preserved under our
natural join operations. Finally, we investigate mathematical properties about the relationships

among several object composition operations (natural join, union and intersection).

Introduction

Recently, much attention has been focused on the
use of Object-Oriented Database (OODB) Systems in
CAD/CAM environment! PB4 Since the notion of ob-
jects in OODB systems caputures both the static aspect
(properties) and the behavioural aspect of objects, it is
suitable for modelling several complex-structured objects
appearing in CAD/CAM environment. Structurally, an
object is constructed by applying tuple constructor oper-
ation and set constructor operation in a recursive manner.
That is, a complex object might be a set of tuples whose
element might be again a complex object. As for the be-
havioural aspects of objects, each behaviour of an object
is represented by a procedure called method, and both
of the static data and methods are encapsulated into an
object.

Although the concept of OODB systems are regarded
as useful for CAD databases and some commericial prod-
ucts appeared, it is not still clear what kind of operations
are fundamental for those object-oriented CAD database
systems. Especially, in CAD environment, operations for
composing new objects from existing objects are very im-
portant, and must be supported in an efficient way by the
systein.

Section 2 gives motivating examples, intuitive explana-
tion of our natural join operation and basic definitions.
Section 3 gives how to realize natural joins by the mes-
sage passing computing mechanism. Section 4 provides a
way to obtain a set of preserved methods on the result of
our natural join, based on the method dependency graph.
Section 5 provides mathematical properties of composi-

tion operations. Section 6 is a concluding remarks.

1016

2 Motivations and Basic Defini-
tions

2.1 Generalization of Relational Natu-

ral Join Operators

In relational data model, the natural join combines two
relations (sets of homogeneous tuples} and produces a big-
ger relation. In order to define a similar operator for com-
plex objects, we believe that the following generalizations
are necessary.

(a) Generalization of operand types

In object-oriented databases, an object is constructed by
applying tuple constructor and set constructorin a recur-
sive manner. For example, an object might be a tupie
whose attribute values are again tuples or sets. In the re-
lational data model, however, the natural join is defined
only for relations (that is, sets of tuples). We believe that
it is important to treat every type of objects equally as
operands for composition operations. Therefore, we need
to generalize the operand type of natural join operator
from a certain class of set-type objects (that is, sets of
tuples) to more general types of objects including tuple-
type objects and atmoic-type objects.

(b) Generalization of comparison operators

In relational databases, the natural join is based on test-
ing equality of values of common attributes of two tu-
ples, where each attribute value is a simple atomic value
such as an integer and a character string. In the case of
object-oriented databases, attribute values are not always
those atomic values, but are general complex objects.- For
example, [name: ’Bob’] and [name:’Bob’, age:30] are
supposed to be tuple-type objects that are values of a

common attribute of two objects. By ordinary equality-
testing, those two objects cannot be joined because the
above two tuple-type objects are not equal. However, it is
obvious that these two tuple-type objects have a kind of
common information (in this case, name: ’Bob’). There-
fore, we need to generalize this equality-testing compari-
son operator so that it may handle such cases.
(c) Generalization into heterogenous set objects
Suppose that

{’Bob’>, ’John’, [name:’Steve’, age:20]}, and

{’Jane’, ’Bob’, [name:’Steve’l}
are given set-type objects. In the spirit of the natural
join, since > John’ and ’Jane’ are not contained by both
of them, these objects will not appear in the result. In
this case, ’Bob’ should appear in the resultant object.
Also, from the discussion in (b),

[name:’Steve’, age:20} and [name: ’Steve’]
are not equal, but share some common information.
So, some kind of object produced from these two tuple-
type objects should also appear in the resultant object.

2.2 Behavioural Aspect of Objects

In CAD database situations, it is very frequent that
users compose new objects from existing objects. Since
objects encapusulate data (attribute values) and meth-
ods, it is necessary to consider which methods in existing
objects are preserved after applying natural join opera-
tors. Figure 1 illustrates this problem. When new object
Onew 15 made from two objects 01 and o, as shown in Fig-
ure 1, the set of methods in 0,,., is not always equal to
the union of the sets of methods in 0; and ¢;. Inituitively,
if the method (name) m, is defined in both of 0, and oq,
and the contents (#mplementation) of method m; in o, is
not the same as the contents of method m; in o;, then
we can not decide the implementation of method m; for

object Oper-

m
04

mo \ Onew
m1 02 X——
/ My

?m1

m
3 Figure 1

2.3 Basic Definitions

In this paper, we denote objects by o,01,04,+++, and
method names by m,my,mg,--+. For a given object o
and an attribute a, o.a denotes the value of the attribute

a of 0. For each object o, attri(o) denotes the set of all

the attribute names.

As for the definition of objects and the equality, we will
obey the following definitions introduced by Bancilhon
and Khoshafianl!. In this sense, we will not consider the
object identify in this paper.

[Definition 1] Objects
Objects are defined recursively as follows;

1. A number, a character, or a string is an object called
an atomic object.

2. There are two special objects TOP (T, the incon-
sistent object) and BOTTOM (L, the undefined ob-
ject).

3. If 0),0, + -,0, are objects, then the set
{01,02,-++,0,} Is an object called a set object.

4. H 04,04, -, 0, are objects and ay,ay,- -, a,(n > 0)
are distinct attribute names then, 0 = [a; : 04,05 :
02, ", 0n : 0,] is an object called a tuple object. o, is
denoted by o.q,.

Then, we define our natural join in the following recursive
manner.

[Definition 2] Natural Join

Given two objects 0, and o3, the natural join of o and
02, denoted by 01 b4 04, is an object that is defined in the
following recursive manner.

1. If 0; and o, are the same atomic objects,

then o) oy = 0.

2. If 0 or 0, is L then o) 1 05 is 1; otherwise if 0 or
02 is T then oy b0, 1s T.

3. If 0; and o, are tuple objects such that
or=[arv1, a0 v by g, ee by sy and
o= [by s ul, -+ bkt a0t Wy, Ot Wi,

(here a,b and ¢ are attributes and u,v,w are at-

tribute values {objects))

then oy & 0y = [a; @ vi,ooc @ @ vyby @ Uy

VOt Wiy

Here, every u; < ! is neither T nor 1. If at least
y t

I . ! .
Uy, bk U DA g, cp g, e

one u,; b u! is T or L, then o; >4 05 is defined to be
L)

4. If oy and o, are set objects such that o, =
{e1,- " ,em} and o = {e},---
are the objects)
then oy b 0p = {e; &) | 1 € {l,---,;m}, j €
{1,- -,n} and ¢; pa ¢} is neither T nor L}

ven}, (where e and ¢

For example, Let 0; and o, be the set objects such that
or = {1,2,]a : 2,b: 3]} and 02 = {2,3,[a : 2]}. By the
definition of natural join, oy oy = {2,{a:2,b: 3] fa:

21} ={2,{a:2,b:31}.

3 Realizing Natural Join

In this section, we show the implementation of our nat-
ural join operator in the Smalltalk-like message passing
computing mechanism. That is, our natural join is also
regarded as a method, and so, we denote the natural join
operator by a message p<:, where the symbol '’ is used to
represent that this message has an argument. Here, we
assume to take a natural join of objects X and Y, which
is denoted by X t<: Y. The implementations of the nat-
ural join are as follows:

(a) atomic class

o |
self = Y ifTrue: [o «— self]

ifFalse: [0 «— ’undefined’].
To

(b) set class

| o xi |

o ¢« Set new.

self do:[:x | Y do: [:y |
xi — (x :y).
(xi=’undefined’) ifFalse:[o add:

o = { v

"re X,yet™"

xilll.
T o

(c) tuple class
| o xi commonAttribute differentAttributel
differentAttribute2 |
o « Tuple new.
commonAttributes «— self attributres N: (Y
attributes) .
commonAttributes do:[:c |
xi « ((self perform:a) tx:(Y perform:a)).
xi= ’undefined’ X.a"
ifTrue: [T xi]
ifFalse:[o add:a:xil].
differentAttributesl « self attributes -: (Y
attributes) .
differentAttributesl do:[:b |
o add:o: (self perform:b)].
differentAttributes2 «— Y attributes —:(self
attributes).
differentAttributes2 do:[:c |
o add:c: (Y perform:c)].

To

"selt perform:a =

Here, o add:A denotes to add the object o to argument
A.

Our natural join is defined in a recussive manner in
which natural join operators are repeatedly propagated
to each component object. So, this definition is naturally
implemented in the message passing computing mecha-

nisi.

1018

Let us show example joined the following objects o; and
oy (that is, o i 0,).

op = {[name : z,dept : y,addr : [city : 2]]} and
0y = {[dept : y, addr : [state : w]]}.

First, by < of a set object, this is {{[name : z,dept :
y,addr : [city : z]] o<t [dept : y,addr : [state : w]]} And,

by ba: of tuple object, the above equation is {[name :
[city : 2] b [state : w]]}. Finally,
by pa: of an atomic object and a tuple object, this result

wl]}-

As for this definition, we should note the following.

z,dept : y bt y, addr :

is {[name : z,dept : y, addr : [city : 2, state :

¢ According to the types of operands of a natural join,
necessary implementations of a natural join are in-
voked at execution time. If necessary, users can cus-
tomize the implementations of natural joins accord-
ing to the types of classes.

e [t is not necessary to prepare a large intermediate
space for exploring two objects for performing a nat-

ural join.

4 Method Preservation Under
Natural Joins

In this section, we investigate what class of methods
are preserved by the result of the natural join.

We denote the implementation of method name m de-
fined in object o by imp(o, m). In the implementation
of method m,, there often exists a statement which in-
vokes another method ;. This means that the method
m, can not be executed if the method m; is not exe- i
cutable. Such dependency relationships among methods
for a natural join o7 <t 0 is represented by a multi-layered
directed graph G = (V| E), called method dependency
graph, where V is a set of vertices where each vertex m
corresponds to a method of o; (1 = 1,2) and their whole
component objects, and £ is a set of directed edges where
each edge ¢ corresponds to the dependency relationship
between methods defined as follows.

o [mi—=[m]

tains a statement self mil.

. -

tains a statement o mi, where o

denotes that imp(o;, m;) con-

denotes that imp(o;, my) con-

self.a and
imp(o;, my) contains o mi.

Suppose that method is defined in both of o; and o,
such that object o; and o, are to be joined. If the method
m in o1 is not same implementation as the method m in
0y, that is, imp(ey,m) # imp(oz, m), then we say this
situation as method-name-conflict. It is impossible for an
object 05 b4 05 to have methods with the same name and

diffrent implementations.

Since our natural join is defined in a recursive manner,
it is necessary to consider the method-name-conflicts at
each nesting level.

Given a method dependency graph for object 0, 4 0,

the following procedure selects the methods preserved.

step 1 For each nesting level, delete the methods with
method-name-conflict (Start from the deepest nest-
ing level).

step 2 Delete all the methods that are reachable from
the name-conflicting methods.

step 3 Go to the upper level of nesting, and repeat step
1 and step 2.

Here, we assume that each set object has that a fixed set
of methods for usual set operations.

By above algorithm, we can obtain the methods which
are preserved by the result of the union (01 U 02). But
in case of intersection, we add the following step to the

above algorithm.

step 4 Delete all the methods of which implementation
contain the losing attributes by intersection.

step 5 Delete all the methods that are reachable from
the deleted methods by step 4.

[Example]

Suppose that the tuple object 0y and o, with the at-
tributes and methods (implementation) as follows.
1960.1.1, add

01 [name : nishikawa, birthday
kobe, school : 014],
[id . 001, birthday : 1960.1.1 add : kobe, school :

02
01)-
o011 = [name : kobe, numberO fTeacher : 100]
091 = [name : kobe, numberO f Student : 1000]
Here, we omit the implementations of methods which
whats N ame
T name)
The method implementations of o; (To be omited the

return the value of attribute as (

methods whats Name, birthday, address and school):
getAge
| x1 x2 |
x1 « self thisYear.
x2 « self birthday.
T (x1-x2)
-howOId
| xt |
x1 « self gethge.
T (x1+1)
changingSchool
| x1 %2 |
x1 « self address.
x2 « self school whatKind
(x1#’kobe’ or:[x2=’small’])

1019

ifTrue: [T ’Change to Kobe university’]
The method implementations of 0, (To be omited the
methods whatsId, birthday, address and school):
how01d
| x1 x2 |
x1 « self thisYear.
x2 < self birthday.
T (x1-x2+1)
changingSchool
bxt |
x1 & self address.
x1=’kobe’
ifTrue: [T ’Change to Kobe university’]
The method implementations of 017 (To be omited the
methods schoolName and numberO fTeacher):
whatKind
| x1 |
x1 « self numberOfTeacher
(x1>=100) ifTrue:({] ’big’]
ifFalse: [} ’small’]}
The method implementations of 02; (To be omited the
methods schoolName and numberO f Student):
whatKind
| xt |
x1 « self numberOfStudent
x1>=999 ifTrue: [T ’big’]
ifFalse: [’small’]

Here, in each implementation, self denotes a receiver
object, and o; my denotes a resulting object abtained by
applying (sending) a method {message) whose name is my
to o;. Each | z; | denotes a local variable z, and 1 returns
the result of evaluating an associated expression.

The following points should be noted in the above im-
plementations of methods:

¢ The method howOld and changingSchool are de-
fined in both of object 0; and o,, respectively. But
their implementations are all defferent. That is, they
are in the states of method-name-conflict.

e In the implementation of method changingSchool in
01, the method what K'ind exists in it.

e The method what Kind is defined in both of object
o1, and o,;. But their implementations are differ-
ent. That is, they are in the states of method-name-

conflict, too.

The method thisYear is assumed to be inherited
from each of their superclasses, and it is assumed

not to be method-name-conflict.

We can obtain the method dependency graph of object
01 b4 0y as Figure 2.
By the above algorithm, we delete the methods as follows:

1. Let’s start from the deepest nesting level (o1, and
021). Then delete what Kind because it is method-

name-conflict.

o

. Delete the method changingSchool defined in o) be-

cause imp(o1,changingSchool) contains
sel fschoolwhat Kind. That is, it is reachable from

the name-conflicting method what Aind.

3. Let’s go to a upper level of nesting. Then delete
howOld because it is method-name-conflict.

Here, method changingSchool is method-name-
conflict originally. But now this method-name-
conflict disappears because :mp(01, changingSchool)
was deleted before step. So, method changingSchool

in o0 1s preserved by tue resulting object oy b 0;.

Therefore, we obtain the methods of 0; 04 as follows;
whatsld, thisYear, birthday, getAge,
address and changingSchool. Also, the set of preserved

whatsName,

methods for the value of attribute school of o) <t 05 be-
comes

{schoclName, numberO fTeacher, numberO f Student}.

o,and o,
[whatsName,0,| [whatsld,o,|

[birthday}—[FowOld.0
1

etAge,o howOld,0,

! - ~-.
i - ~——
I P .,
1 - 0,,ando ~~o
Lo 21 |schoolName ~
14
/1
"t |numberOfTeacher| InumberOfStudent,
\ 011 021
A Y
1Y
‘\
\ Y]

YwhatKind,o, |

Figure 2

lwhatKind,o21

5 Properties of Object Compo-
sition Operations

The following are the definitions of sub-object rela-
tionship among objects, which is necessary to define
unton and intersection introduced by Bancilhon and
Khoshafian.

1020

[Definition 3] Sub-object relationship

Given an object 0 and an object o', we define that object
o is a sub-object of object o' (denoted o < o) recursively
as follows;

1. Let 0 and o' be two atomic objects, then o is a sub-
object of o' if 0 =0'.

2. Let o and o' be two set objects, o is a sub-object of
o' if every element of o is a sub-object of an element

of o'.
3. ois a sub-object of o.

4. Every object is a sub-object of T and L is a sub-
object of every object.

[Definition 4] Union and Intersection

The union of two objects o; and o, is the smallest ob-
ject that contains both of them (i.e. their least upper
bound under the sub-object relationship). It is denoted
by 0 U 0a.

The intersection of two objects 01 and o5 is the largest ob-
ject which is contained in both of them (i.e. their greatest
lower bound). It is denoted by o1 N o,.

Suppose that o; = {[a : 1,b:1],{c: 1]} and 0, = {[b :
1],[a : 1,c: 1]}. We obtain the union, natural join and
intersection of o; and o, as follows:

e oyUoy={[a:1,b:1,c:1]}

e ooy, ={la:1,b:

),la:1,¢: 1]}

e oy Noy={[a:1],[6:1],[c: 1]}

Nfe:1,b:1c:1)[b:1,c:

This example shows different aspects between our natu-
ral join, the union and intersection operators. As shown
above, our natural join can be computed by computing
each elemnt-wise natural join. On the other hand, the
union needs a large intermediate space which holds the
whole contents of 0; and 0,. However, it should be also
noted that the result of the union operator is guaranteed
to be a reduced object, but that the result of natural join
is not. Here, a reduced object is intuitively an object,
in which there does not exist any nontrivial sub-object
relationship between any pair of elements of the object.
In the following, we show several properties of object
composition operations, some of which appeared in {6].

[Property 1]

If oy and o, are tuple objects such that o, = [ay
sartu, by s ug, e bkt wg] and op = by s ul, e e, by
D W),

then oy Moy = [by tuy Ny, -+, by s g Ny

Uy,

' .
Up, C1 Wy, 7 Cm

[Property 2]

If o; and o, are tuple objects such that o = [a;
v, vy by sy, b and o = [by sl b
Uy, €11 W1y ",y O Wing),s

then oq Uoy = (a1 1 vg,- -, v by 0wy Uy, oo by
up U U, ¢1 Wy, e, o D Wi

[Property 3]
Let 0; and o; be set objects, then
orNoy <{e,Nfjlei€oy,f, €02}

[Property 4]
For each object 0; and o, 03 N oy < 0 & 0, holds.

[Property 5]
For each tuple object 0; and o,, 0 4 03 < 01 U 05.

Next, we investigate the following question concerned
with the relationship between natural joins and sub-
object relationships.

e Are the sub-object relationships preserved under our
natural join operation 7

[Property 6]

Suppose that o1, 04, 0] and o, are atomic or set objects
constructed by only set constructors. Then, if 0; > o}
and o, > 0} then o1 4 0, > of a0,

Note that when o1 and o; are tuple objects, then prop-
erty 6 does not always hold in general [6].

The following condition guarantees that tuple objects
satisfy this property.

[Property 7]

For each tuple object constructed by only tuple-
constructors o;,0{,0, and o}, such that o; > o} and
09 > oY, if the following conditions hold, then o; &1 0, >

0} >4 0.
o attri(o)) — attri(os) 2 attri(o}) — attri(ol).
e attri{oy) — attri(o)) D attri(o)) — attri(o}).
o attri(o)) Nattri{oy) 2 attri(o}) N attri(o}).

¢ For each attribute A in attri(o}) Nattri(cy), = > y
holds for the A-value z of 0y 1 05 and the A-value y
of 0 a0},

6 Concluding Remarks

In this paper, we introduced a recursively-defined nat-
ural join operation for composing CAD database objects.
Then, we showed how to realize the natural join by the
message passing computing mechanism. Next, we showed

1021

a way to examine what kind of behaviours (methods) are
preserved under our natural join operations. Finally, we
investigate mathematical properties about the relation-
ships among several object composition operations (nat-
ural join, union and intersection).

Further research will be needed for the following prob-
lems:

o How to develop efficient processing techniques for ob-
ject composition operations.

e Formalization and efficient implementations of other
types of object composition operations, such as con-
catenation of objects, where the output of the former
object is transmitted to the latter one.

o Obtaining a clear semantics of our natural join oper-
ation.

Acknowledgement
This work is partially supported by the Science Foun-

dation Grant of the Ministry of Education, Science and
Culture of Japan.

References

[1] Zaniolo,C. et al., Object-oriented Database Sys-
terns and Knowledge Systems, Expert Database Sys-
tems (L.Kerschberg ed.), Benjamin/Cummings Pub.
Company Inc., pp.49-65, 1986.

[2

—%

Bancilhon,F., Object-Oriented Database Systems,
Proc. of ACM PODS, pp.152-162, March 1988.

—_—
&

Tanaka,K., Object-oriented Database Systems: Back-
ground and Concept (in Japanese), bit, Vol.20, No.6,
pp-83-90, June 1988.

Batory,D.S. and Kim,W., Modeling Conceptes for
VLSI CAD Objects, ACM TODS, Vol.10, No.3,
pp-322-346, Sept. 1985.

(4]

[5] Bancilhon,F. and Khoshafian,S., A Calculus for
Complex Objects, Proc. of ACM PODS, pp.53-59,

March 1986.

Tanaka,K. and Chang,T.S., On Natural Joins in
Object-Oriented Databases, to appear in Proc. of
the 1st International Conference on Deductive
and Object-Oriented Databases (DOOD89), Kyoto,
Japan, Dec. 1989.

