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ABSTRACT — A discrete-time learning control for robotic manipulators is studied using its pulse transfer
function. I'irstly, discrete-time learning stability condition which is applicable to single-input two-outpuis systems is
derived. Seccondly, stability of learning algorithm with position signal is studied. In this case, when sampling period
is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with
position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in
learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using
the discrete-time learning control are shown. This sitnulation results agree well with the analytical ones.

1. INTRODUCTION

A learning control based on repetitive aperations of
robotic manipulators is one of the most promissing methods
to realize high speed and high precision control for robotic
manipulators[1]-[11]. The learning control system is a
discrete-time system essentially. Therefore, Ishihara et.al
proposed a design method for the discrete-time learning
control system[12]. But this method is based on the inpulse
response of the system, and they did not study the learning
control system using its pulse transfer function.

In this paper, we assume the control system of each
joint of the robotic manipulator to be a discrete-time linear
system. Then, to discuss the learning stability, we derive
the learning stability condition of the discrete-time learning
control system, which is applicable not only to the system
of which input number is the same as output number but
also to the single-input two-outputs system. Based on the
derived condition, we study the learning stability of the
following two learning algorithms in the robotic manipulator
control system. One is the algorithm with the position
signal, and the other is the one with the position and
velocity signals.

All continuous-time systems with pole excess being
larger than two will always give discrete-time systems
with unstable zeros provided that the sampling period is
small[13].  Although this is a serious problem for the
learning algorithm using only the position signal, we can
stabilize the learning control systems by adding the velocity
learning.

Finally, we examine the learning stability for the non-
linear robotic manipulators by numerical experiments.

2. STABILITY CONDITION FOR DISCRETE-TIME
LEARNING CONTROL SYSTERMS

2. 1 Discrete-time learning control systems

We consider the following single-input r-outputs con-
tinuous system which is controllable and observable:
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(1-a)
(1-4)

2(t) = Ac - 2(t) + b - u(t)
y(t) = C - =(1),

where
Ac:inxn, b :nxl, C:rxn
z(t):nx1, y{t):rx1, u(t):1x1.
By sampling and zero order holding the system, the follow-

ing equation is obtained:

z(i+ 1) = A-2(i) + b - u(d) (2—a)
¥(i) = C - (i), (2-b)

where

T
A=ezp(A.-T) :nxn,b:/ exp(A.-t)dt 1nx1,
0

7 : sampling period.

From (2), the pulse transfer function of the system G(z) is
given by

Cy=C-(z-T-A)y" b rx1 (3)
Y(z) = G(2) - U(=2), 1)
where
Y(z) : z-transform of output signal
U(z) : =-transform of input signal.
Uk (2) Ye(2) Ya(2)
MEMORY G(z) F——>
- +
t Ex(2)
H(z)
Uk+1(2) +

Fig. 1 Block diagram of learning control systems



Now, we consider the learning control systems shown in

Fig. 1. 1i(z) denotes the learning operetor. The input
signa! for (£ -+ 1) th trial Uy (2) is given as follows:

U1 (2) = Ue(2) + H(z) - Ex(2), H(z):lxr (5)

E(2) = Yu(z) — Yi(z), (6)

where subscripts &,k + 1 denote the trial numbers, Y,(z)
the z-transform of the desired output, and E.(z) the z-
transform of the error signal of the k th trial. Then, the
pulse error transition function matrix S(z) is given by

]’,‘g+1(z) = S(z) B EE(Z)
= (1~ G(2) - H(2)) - En(2). )

2. 2 Learning stability condition

In this section, we show the learning stability condition,
that is, the condition for the output error to converge to
zero in a sense of L, norm. The convergence of the L, norm
of the output error is expressed by the following equation:

N-1

S el (@) - exi7).

=0

N-1
N el 6T) e (1) <

i=0

(8)

From (8) and the Parseval’s equation, we obtain the learn-
ing stability condition as follows:

sup \/,\,,,M{S"(r:f“‘"')<S(ej“’T)} <1,

0<wlwn

&)

where
wn: Nyquist frequency
11 denotes the conjugate transpose.

The left side of {9) expresses the I, gain of S(z). So, the
learning stability condition is that the L, gain of $(z) is less
than one. The L, gain of the system is equal to the I/,
norm of its transfer function{14]. Then, (9) is rewritten as:

I S(2) flo< 1, (10)
where || - ||.. denotes /I, norm.

2. 3 Learning stability condition for the single-input

two-outputs systems

If we regard the applying voltage to a direct current
motor (D.C.M.) as an input signal and the position and
velocity as output signals for the control system of each
Joint of the robotic manipulator, we obtain a single-input
two-outputs system. In this case, (i(z) is 2 x 1 vector, 1/(z)
is 1 x 2 vector and S(z) = I — G(z) - H(z) is 2 x 2 matrix,
respectively. Because ((z) - 17(z) is singular, 1 — G(2) - 1(z)
should have an eigen value 1, even if the learning control
system is stable. The learning stability condition (10) is not
applicable to the single-input two-outputs systems. Then,
we derive a condition which is applicable to the single-input
two-outputs systems as follows.

The eigen values Ai(z), Ay(z) and eigen vectors V;(z),
Va(z) of S(z) are given as follows:

A(z) = 1= H(z) - G(2)
Az(2) =1

Vi(z) = G(z)
Va(z) L HT(2). (11)

The desired output signal is given by
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Ya(z) = G(z) - Ua(z). (12)
Then, the output error of the & th trial is given by
Ex(z) = Ya(z) - Ya(2) = G(2) - (Ua(2) — Us(2)).  (13)

In (13), Ua(z) and U.(z) are scalar valued functions, so
Ei(z) is parallel to G(z). As the direction of vectors E.(z)
and Eypy (2) are restricted to that of Vi(z), we need not
consider the convergency along Vi(z). The equation(7) is
rewritten as:

I’fk+1(z) = S(z) N Ek(l)

=Ai(2) - Ee(z)- (14)
As the result, the learning stability condition is obtained as
follows:

(15)

I A1(2) |loo= JSup 1~ H(eTy-G(*T)] < 1.

<wX

If the output number is one, (15) is equivalent to (9).
This idea can be expanded to the systems of which
input number is less than output number[15].

3. LEARNING WITH THE POSITION SIGNAL

Now we consider a case that the controller of each joint
is designed independently (including the learning controller)
and that the learning algorithm is realized with only the
position signal. The control system of each joint is regarded
as a single-input single-output (S51SO) system. |f the
sampling period is small, the pulse transfer function of the
system often has unstable zeros. Especially, when the pole
excess of its continuous-time transfer function is larger than
two, the corresponding discrete-time pulse transfer function
has unstable zeros[13]. We examine relationships between
the unstable zeros of the system and the learning stability
in the following section. ‘

3. 1 Relationship between the unstable zero and the

learning stability in the SISO systems

We assume that G(z) and #(z) have stable poles, and
G(z) has an unstable zero z in a region |z| > 1 on a complex
z-plane(G(z) and 11(z) are scalar valued functions). H G(z)

Z,

NI

nonsingular
domain

Fig. 2 p; and z, on z-plane



and Ji(z) have stable poles, A,(z) in (15) has also stable
poles p; {Ip:| < 1), and A,(z) is nonsingular in the region
|z] > 1 (Fig. 2). For the unstable zero zy (jz] > 1), we
obtain the following equation:

M(z0) =1~ H(z0) G(za) =1 (G(2)=0) (16)
By the maximum modulus principle[16], the maximum
value of |A(z)} in the region |z| > 1 is given on the unit
circle |z| = 1. The left side of (15) expresses the maximum
value of [A;(z)] on |z] = 1, and we obtain the following
equation:

A1 (T > [Ar(z0)l = 1. 17

sup
0<w<wn

From (17), if G(z) has an unstable zero, the learning
stability condition (15) is never satisfied for all 1/(z).

3. 2 An example of the unstable learning caused by the

unstable zero

If the current minor loop in the control system of each
joint operates ideally, the pole excess of the continuous-
time transfer function from the applied voltage to the joint
position should be two. The corresponding discrete-time
pulse transfer function does not have unstable zeros. If
the motor has a large inductance and the electrical time
constant is large, the pole excess of its transfer function
is three. Then, its pulse transfer function should have an
unstable zero with a small sampling period.

Figure 3 shows a block diagram of the control system of
each joint. The feedback loop using the position ¢ and the
velocity 0 is a conventional one. The feedforward voltage
ve(i) is modified by the learning algorithm. This learning
method is equivalent to modifying the input signal u,(i) as
follows:

(i) = Kp - 0a(i) + Kv - 04(3) + v (3). (18)
z-transform of ui(i) is Ui(z) in Fig. 1.

Here we approximate the dynamics of each joint of the
robotic manipulator by the one of the D.C.M. of each joint.
in other words, we assume each joint of the robotic manip-
ulator to be a single-input single-output linear system. The
constants of the D.C.M. of each joint are listed on Table 2.
We do not neglect the armature inductance and set the
value of the inertia J at 3. J,, to take the arm inertia into

G(z)

H(z) .

Vi

Fig. 3 Block diagram of control system
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account. The transfer function from the applied voltage to
the joint position is given as follows:

b

5'(8'—051)’(5‘G¢2)’

Ge(s) = (19)
where b, = 270 x 10° , a,, = -54.2 and a,; = —156.
The corresponding pulse transfer function of the system
including the feedback loop is given as follows:

by -(z—b1)- (2~ b)
(z—c1)~(z——cz)»(z—c;;)'

G(z) =

(20)

where bg, by, b2, ¢1, ¢ and c3 are listed on Table 3.

It is an important problem how to decide the learning
operator H(z). |f we use the inverse system of C(z), we
will have a high convergence rate[8} (because such 7i(z)
reduce the absolute value in (15)). But, if G(z) has an
unstable zero like (20), we can not use its inverse system.
So, instead of (19), we consider a second order system of
which the armature inductance is neglected, and calculate
its pulse transfer function ¢’(z) including the feedback loop
like (20). Then, we use the inverse system of (;/(z) as the
learning operator 11(z). H(z) is given as follows:

(z—di) - (z —d»)

H(z) = o =)

) (21}
where d,, dy, ¢g and ¢, are listed on Table 3, and the value
of the inertia in G'(z) is set at J,, (Note that there exist
modeling errors).

Figure 4(a) shows numerical results of the learning
stability with G(z) and H(z) expressed in (20) and (21),
respectively. The vertical axis expresses the absolute value
in (15), and the horizontal axis frequency. When the
sampling period T is small (2(mns)), the learning stability
condition (15) is not satisfied in high frequency domain.
This result corresponds to the analytical result in 3.1.

(=1

e

S

4 T=30ms
=8 -
£e| . T=12ms Ta2ms .~
e ° /

Q

<

(=] T T T T T T T T T 1

0.00 $0.00 100.00 150.00 200.00 250.00

FREQUENCYIHZ)
Fig. 4 (1 - H(“T) . G(e7*T)| — w plots
(a) learning with position

4. STABILIZATION OF THE LEARNING ALGORITHM
BY ADDING THE VELOCITY LEARNING

4. 1 Learning stability of the single-input two-outputs

ststems

Adding the velocity learning leads to an increase of the
output number of the system to two. Here, we assume that



two-outputs system does not have common unstable zeros.
This means that system does not have unstable invariant
zeros, because the system (2) is controllable and observable
for almost any sampling period T. Then, G(z) and H(z) are
given as follows:

— gn(2) . a1(2)
a0=5G(50) @)
_ (h(2) ha(2))
H(z) = REPNAT (23)

where g,.(z) is a stable polynominal, and ¢,(z) and g(z) are
relatively coprime. When G(z) like (22) is given, we can
acquire H(z) which satisfies the learning stability condition
(15).

By substituting (22) and (23) into (11), we obtain the
following equation:

A(2)=1-H(z) - G(2)
=1=gn(2) (h1(2) - 9:1(2)
+ ha(2) - 2(2))/(dn(2) - dy(2))-
When g1(z) and g.(z) are relatively coprime, there exist

hi(z) and hy(z) which satisfy the following equation for any
a(2)[17):

(24)

hi(2) - 91(2) + h2(2) - 92(2) = a(2). (25)
From (25), (24) is rewritten as:
M(z) =1 - In(2) a(2) (26)

dn(z) - dg(z)’

If we choose a(z) in (25) to be a stable polinominal,
the second term of the right side in (26) does not have
unstable zeros. In other words, we can realize the stable
learning by choosing h,(z) and #,(z) to stabilize a(z) in
(25). Thus, in the case of the learning algorithm with
the position and velocity signals, we can place the zeros
of 1(z)- G(z) anywhere on z-plane. This is the major
difference comparing with the learning algorithm with only
the position signal.

4. 2 Stabilization of the learning algorithm by adding

the velocity learning

When we regard the system in Fig. 3 as two-outputs
system, G(z) is given by

o= (36

Gi(z) : same as (20)

where

Jo-(z—N)-(z—1)
(z—e1)-(z—c2) (2 —e3)
and f,, fi are listed on Table 3. Like(21), based on the
model of the D.C.M. (A,, B,. C) of which the armature
inductance is neglectd, we determine /i(z) as follows:

Gy(z) =

(27)

H(z)= Bl -(z- T~ An)-CY, (28)

where
Bl =(BhL-Bn)"' - Bh.

Generally, there exist various inverse systems for single-

1072

input two-outputs systems. Among these inverse systems,
H(z) in (28) is easy to construct the learning algorithm.
H(z) in (28) is rewritten as:
H(z)=(90-(z—¢1) g2-(z~g3)), (29)
where go, g1, g2 and g5 are listed on Table 3. #7(z) in (29)
stabilizes a(z) in (26). Figure 4(b) shows the numerical
results of the learning stability with G(z) and #(z) expressed
in (27) and (29), respectively. In this case, the learning
stability condition (15) is satisfied for any sampling period.
In the case of the learning with the position and velocity
signals, we can realize stable learning unless G(z) has a
common unstable zero. Moreover, as the pole excess of
the transfer function from the applied voltage to the joint
velocity is two, G,(z) does not have an unstable zero. Then,
G(z) does not have a common unstable zero (it may have
a common stable zero). After all, we can realize the stable
learning by using the position and velocity signals.

o8
[ —T """"""""""""""
T=2ms
T=12ms
T=30ms

[=]

<

< T T T T T T | R T 1

0-00 50.00 100.00 150.00 200.00 250.00

FREQUENCY(HZ)

Fig. 4 |1 - H(e/*T). G(¢'*T)| — w plots

(b) learning with position and velocity

5. SIMULATION RESULTS FOR ROBOTIC
MANIPULATORS

The actual robotic manipulator has nonlinear dynam-
ics. In this chapter, we examine the effect of the nonlinear
term, such as the centrifugal force, the Coriolis force and so
on, to the learning stability. Figure 6 shows the simulation
results about the learning stability for the robotic manipula-
tor in Fig. 5. The constants of the robotic manipulator are
listed on Table 1. In Fig. 6, the vertical axis expresses the
integral of the position error of the link1, and the horizontal
axis the trial number. The desired trajectory is a circle with
center (0.2 , 0.2)(m), and radius 0.1(m) on the cartesian
coordinates.

;

Fig. 5 Robotic manipulator of 2 d.o f.



5. 1 Learning with the position signal

In the case of the learning with the position signal,
the position error diverges when the sampling period 7' 1s
small(Fig. 6(a)). The learning stability condition is not
satisfied in high frequency domain as mentioned in chapter
3. Although the desired trajectory does not have any high
frequency component, the error signal begins to contain
high frequency components as the learning goes on. So,
the learning algorithm diverges.

5. 2 Learning with the position and velocity signals

In the case of the learning with the position and velocity
signals, the position error converges for any sampling period
(Fig. 6(b)). The error, however, does not converge to 0 but
to a certain value. This is explained as follows.

The desired velocity trajectory is made from the differ-
ence of the desired position trajectory. The desired velocity
trajectory is not always accurate, in other words, Uy(z)
satisfying Y,(z) = G(z) - Ua(z) does not always exist. Espe-
cially, when the sampling period is large, the inaccuracy is
enlarged. In this case, the error converges to a large value.
This happens often in systems of which input number is
less than output number[15].

As shown in this chapter, when the sampling period is
small, we had better use the algorithm with the position and
velocity signals for the stability, and when the sampling pe-
riod is large, we had better use the learning algorithm with
the position signal for the convergency. These simulation
results agree well with the analytical ones shown in chapter
3 and 4, which is based on the linear approximation.

16>

==t

-
Q,

Cunxidt

L. ,

T3 § 791318
TRIAL NUMBER

Fig. 6 Convergence of position error of linkl

(a) learning with position

T35 7 9 113 15
TRIAL NUMBER

Fig. 6 Convergence of position error of linkl

(b) learning with position and velocity

6. CONCLUSION

In this paper, we have shown the learning stability con-
dition which is applicable to the single-input two-outputs
systems. And, we have studied the learning stability of the
following two algorithms in the robotic manipulator control
system. One is the algorithm with the position signal,
and the other is the one with the position and velocity
signals. When the electric time constant of the D.C.M.
1s not negligible, the learning algorithm is not stable for
small sampling period in the learning algorithm with the
position signal. This is caused by the unstable zero of
its pulse transfer function. In the learning algorithm with
the position and velocity signals, the learning algorithm
is stable for any sampling period. This is because we
can place the zeros of H(z)  G(z) anywhere on z-plane.
But, when the sampling period is large, the output error
does not converge to 0 but to a certain value. Therefore,
when the sampling period is small, we had better use the
algorithm with the position and velocity signals for the
stability, and when the sampling period is large, we had
better use the learning algorithm with the position signal
for the convergency.

Table 1 Constants of robotic manipulator

Link Mass Inertia Link |Link center
length [ of gravity
No. || m(kg)| [(kg-u2) | L(m) k(w)

1 9.5 |4.30X10°2] 0.25 0.20

2 5.0 {8.10X10°°| 0.18 0.14




Table 2 Constants of D.C.M.

Link Inertia | Damping Electro-motive
Ja coefficient D, | force coefficient
No. (kg w?) (N-»-s/rad) Ke(V-s/rad)
1 4.61X10°5 3.84X%10°2 0.188
2 | 2.65X%10°® 1.39%X10°2 0.153
Link | Torque Aramature Armature Gear
constant resistance | inductance ratio
No. Ky (N-»/A) Ry (02) La () N
1 0.188 10.0 6.3%1073 80
2 0.153 17.0 10.0X1072 60

Table 3 Parameters of system and learning operator

T ba by by

2ns 1.86X10°¢ -2.05 -0.103

12as 9.19X10°% -0.981 ~0. 00425
30us | 4.88X1074 -0.642 -4.81X10*

T ¢y C2 C3

2us || 0.865+0. 149j 0.885-0. 149 0. 0968

12ms || 0.546+0.449) 0.546-0.449) 0.0158

30ms || 0.279+0.511j 0.278-0.511J 0.00378

T d; de eq e

2as || 0.475 0.807 9.19X1078 -0.899
12ns 0.0114 0.278 2.12X1074 -0.536
30ms || 1.61X10°® 0.040 7.58X1074 -0.250
T fa 1 ga & & 8
2us || 0 00230 | -0.363 0.121| 4.81X10* (115 |-0.335
12as| 0.0146 | -0.0409 0.287 | 7.64X10° | 36.8 | ~0.247
30ms | 0.0254 |-0.00888 | 0.759] 1.33X106° | 31.8|-0.192
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