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1 Introduction

In this paper, we propose a neural network for learn-
ing to control semi-linear dynamical systems. The net-
work 18 a composite system of four three-layer backprop-
agation subnetworks, and is able to control inverted pen-
dulums better than systems based on modern control
theory at least in some ranges of parameters.

Three of the four subnetworks in our network system
process angles, velocities, and positions of a moving in-
verted pendulum, respectively. The outputs from those
three subnetworks are input to the remaining subnet-
Each of the four
subnetworks learns connection weights independently by

work that makes control decisions.

backpropagation algorithms. Teaching signals are given
by the human operator. Also, input signals are gener-
ated by the human operator, but they are converted by
preprocessors to actual input data for the three subnet-
works except for the network for control decisions. The
whole system is implemented on both of 16 bit personal
computers and 32 bit workstations.

First, we briefly provide the research background
and the inverted pendulum problem itself, followed by
the description of our composite neural network model.
Next, some results from the simulation are given, which
are subsequently compared with the results from a con-
trol system based on modern control theory. Then, some

discussions and conclusion follow.

2 Research Background

For our study, we have chosen the broom balancing
problem. The broom balancing problem is compara-
tively easy to express in mathematical notation, and is
famous for being an experimental example that can be
used to show the effectiveness of modern control theory
RIB)AllS)

Although mathematically designed contro} systems

may offer high quality control for control objects it was
designed for, it will be useless for other control objects,
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and thus redesigning the system will be necessary. On
the other hand, humans are so general that they have
fair control of a wide range of control objects. One of
the major reasons for this difference occurs from the dif-
ference in the knowledge representation methods. For
example, Ichikawa proposed a general-purpose control
system based on adaptive production systems and ap-
plied it to the broom balancing problem[1]. On the other
hand, recently attention is being focused on neural net-
works. There is growing expectation for its application
to control, especially since researchers for neural net-
works applied the back propagation algorithm to a va-
riety of problem domains[6]. Also, the broom balancing
problem is taken as an example domain for neural net-

work applications(7].
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Fig.1: A human operator and controled object

Fig.l shows a block diagram that represents a sys-
tem with a controled object of control and a human
controlling it. The network learns human experience by
observing the system of Fig.1 from the outside (Fig.2).

Data equivalent to the input information needed to
produce human control signals is regarded as the in-
put signal for the neural network and the control signal
produced by a human operator corresponding to the in-
put information becomes the teacher signal. Neural net-

works learn by the back propagation. That is to say, the
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Fig.2: The neural network learns human operation



neural network system obtains the empirical knowledge
of the human operator. After learning, the neural net-
work is expected to be able to estimate the environment
just as the human operator does(Fig.3). In this study,
we will show that the neural network system mentioned

above can be costructed.
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Fig.3: After learning

3 The Broom Balancing System

The broom balancing problem we deal with here is
represented by the following system.

¢ The system consists of a cart and a pole that
stands on the cart. The cart can move on a straight
rail freely, and we will call this system, " The broom

balancing system”.

e The cart position can be controlled within +5m,
and the pole angle within £24 degrees. Four dif-
ferent forces can be applied to the cart.

LEFT STRONG, LEFT WEAK
RIGHT STRONG, RIGHT WEAK

e The pole does not slip on the cart.

e Friction on the cart and air resistance on the pole

are to be ignored.

The judgemem network
The m;le network The pesllwn nmmk The velocity netwotk
preprocessar J I preproosssor

Fig.4: Overview of our composite neural networks system

4 Structure of the Neural Net-
work

Fig.4 shows the overview of the neural network used
in this study. The system is composed of three sub-
networks - the angle network, the position network and
the velocity network, which make up the criteria for de-
termining the direction of output, and the judgement
network, which integrates the output of the three sub-
networks and makes the final estimation. We assume
that there is a preprocessor for each subnetwork which
converts visual pattern to input for each of the subnet-
works. Each of the subnetwork corresponds the physi-
cal parameter - the angle of the pole, the position of the
cart, and the cart velocity. Processing low level informa-
tion is not the goal of this study. So we assume here that
preprocessors for visual pattern recognition are already
implemented. Although we will not use it here, Ralph
Linker showed that, by utilizing neural networks, a pre-
processor can be composed[9]. He used self-organization
properties of neural networks to classify bitmap data.
In the following section we describe each of the subnet-
works.

4.1 The Three Subnetworks

The Angle Network The angle network makes esti-
mation for angle information. It is a three-layered
hierarchical neural network with one layer consist-
ing of 20 input units, one with three hidden units,
and one with four output units. We assume that
the preprocessor provided at the input of the an-
gle network converts visual input information into
physical angular parameters and adjusts it for net-
work input.

The network classifies the angle of the pole iuto
the following four classes.

¢ If the pole leans to the right, then output is
0010.

o If the pole leans to the left, then output is
0010.

o If the pole leans over the right threshold an-
gle, then output is 0001.

e If the pole leans over the left threshold angle,
then output is 1000.

The Position Network The position network makes
the estimations for cart position information. It
is a three-layered hierarchical neural network with
one layer consisting of 20 input units, one with ten
hidden units, and one with four output units. We



assume that a preprocessor that converts visual in-
formation into input for the network is provided.
This network classifies the position of the cart ac-
cording to the following threshold values:

¢ a) extremely left

e b) left

s c) right

¢ d) extremely right.

The Velocity Network The velocity network makes
estimation for cart velocity information. It is a
three-layered hierarchical neural network with one
layer consisting of ten input units, one with four
hidden units, and one with three output units. We
assume that a preprocessor that converts visual
information into input for the network is provided.
This preprocessor is implemented by using optical
flow. This network classifies the velocity of the
cart according to the following threshold values:

s a) exceeding the threshold velocity in the left
direction

¢ b) none

s c) exceeding the threshold velocity in the right
direction.

4.2 The Judgement Network

Control signals are produced by inputing informa-
tion from the three subnetworks into the judgement net-
work. Therefore we prepared 4+4+3 = 11 input units,
four hidden units and five output units. We have not
focused yet on how to determine the number of hidden
units. In this study, we determined the number of hid-
den units by trial and error based on results of past
experiments with the system. The threshold values for
the angles, positions, and velocities were also selected
experimentally.

5 Learning Experiments

The broom balancing system simulator was imple-
mented for collecting the teacher signals from records
of human actions. A human operator produces control
signals (which later become teacher signals) by observ-
ing the broom balancing system. The simulator was
implemented on a personal computer with high graphic
input-output capability. Current multiple task OS’s do

not have the ability to maintain constant speeds needed
for our animation., We mainly used a high speed work-
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station for the learning procedure.

Production of teacher signals from records of human
actions is an interesting aspect of our system. But at the
same time, this system presents some problems. Even
under the exactly same conditions (i.e. the pendulum is
in the same angle, and the position and velocity of the
cart are the same), a human operator does not always
produce the same output. A human operator can pro-
duce many control signals in only 30 seconds of control
action. This is not always preferable. A contradiction
in data can disturb the learning process. The teacher
signals were basically produced according to the follow-
ing rules. For a state P (consisting of the angle of the
pendulum, the velocity of the cart, and the position of
the cart), let Rp be the teacher signal (i.e. the control
signal) in the right-direction, and Lp be the signal in
the left-direction. If either

>1 (1)

or

>1 (2)

is held, we chose the data with the greater number of
appearance to be the teacher signal. For every other sit-
uation, possibly correct control signals were considered
one by one and an appropriate one was selected to be
the teacher signal.

In this study, each neural network learned indepen-
dently. We made each subnetwork learn a threshold
value. Since the teacher signals also become the input
for the judgement network, we later determined teacher
signals with which the system as a whole can produce
preferable control signals by trial and error.

The initial values for the connection weights for all
the neural networks were determined randomly. Bi-
ases of the networks are predetermined as one [6]. We
adopted, as the number of hidden units, the number

for the established set of teacher signal and input signal
when the squared error between the output of the neu-
ral network and the teacher signal was very close to 0
(under 0.00001). Finally, by using a selected number of
hidden units, the connection weights of the judgement
network converged at approximately 900 cycles of the
back propagation algorithm.

Table 1: Control performance by using the composite neural network

mass of pole | length controliable max angle |

Learned task 0.1 Kg 1.0m [90(deg) [ =100 %
Tength changed - — 30w [ 60 (deg) | 67 |

B 505 m | 9.0 (deg) 00 %)
Mass changed — 0.5Kg - 81 (deg) 9% % |

— 1.0Kg - 6.1 (deg) 68 %)

— 0,05 Kg - 9.0 (deg) 100 %

Tength and Mass changed || — 0.05 Kg | — 1.8 m [[ 8.0 {deg) 8 %




6 Experiments for Performance
Evaluation

An advantage of using neural networks for control
is in the flexibility gained in the system. By using a
composite neural network which has finished its learn-
ing process, we tried to control an object with different
physical parameters (Table 1). The learning process was
conducted with the values of the weight of the pendu-
lum equal to 0.1Kg, with length 1.0m, and inital angle
at 8 degrees. We considered the control performance to
be a success if prespecified conditions are satisfied for a
certain period of time. (In our case, we defined it to be
200 seconds.)

7 Comparison with modern con-
trol theory

We have also made broom balancing simulations based
on modern control theory.

Since controlling the pendulum to remain perpendic-
ular is necessary for the broom balancing problem, we
used linear differential equations in the neighborhood of
the perpendicular position.

Let m be the mass of the pendulum, I be the moment
of inertia of the pendulum, M be the mass of the cart,
H be the drag imposed on the fulcrum in the x direction
and V be the drag in the y direction.

Then the equation of motion for the broom balancing
system can be expressed as follows:

d?lld%;(p Visingp — Hlcos
CcO8
7721 de? “ = —mg -+ 4 (3)
md 1r;tlsmgo = H
}W%z = u—H.

If we assume ¢ & 0, and so sing = ¢, cosp = 1 in

equation (3), and thus (3) becomes:

smlg = vlp— hl
v = mg
mi+mlp = h (4)
mi = f-h.

In modern control theory, linear approximations are
often used to solve the problem in nonlinear regions. In
other words, in modern control theory, control signals
can be produced in regions where linear approximations
are possible. However, it is difficult to produce signals
in regions other than these.

In order to make comparisons with modern control
theory, we chose the following four poles for computa-
tion:
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The results of the simulations based on equation (3),
(4) and (5) are shown in Table 2. Systems based on mod-
ern control theory is empirically better than our system
in the linear area at stability and control cost (in this
case, it means energy used by cart movement ). On the
other hand, the neural network system has flexibility.
The neural network control system in this paper is able
to control about 25% larger than systems based on mod-
ern control theory. The control signals generated by our
system are similar to ones in bang-bang control. If we
were to make comparisons in wider regions which ex-
tend out into the nonlinear regions and where physical
parameters differ for each object, our system seem to be
effective.

Table 2: Control performance based on modern control theory

mass of pole | length controllable max angle ]
Learned task 0.1 Kg 1.0m | 5.8 (deg =100 %] |
Length changed - — 1.2m || 4.9 (deg 84 %)
- S 1.5m || 2.6 (deg 45 %)
. — 1.6m || — (deg) o %
s —0.5m || 7.2 (deg) 124 %]
Mass changed — 0.5 Kg - 5.5 (deg) 95 %)
—10Kg B 4.8 (deg) 3 %
—0.05 Kg = 5.8 (deg) 100 %
Length and Mass changed | — 0.05 Kg [ ~ 1.8 m || 6.2 (deg) 107 %
. .
8 Discussion
Before the subnetworks mentioned above were se-

lected, we considered other candidates such as:
1. The angle velocity network

2. The acceleration network

3. The angle acceleration network
. The inclination-direction detection network
5. The velocities-direction detection network

6. etc.

By assuming appropriate preprocessors, these subnet-
works can learn the criteria for each situation. At first,
it was thought that, with more subnetworks, control ca-
pability would be increased. However, it became clear
that there were many obstacles against the progress of
experiments. It is difficult to produce teacher signals for
instance, but more than that it was found that control
capability and the amount of network information were
not always directly proportional. So having many sub-
networks does not always contribute to the increase in
control capability although it slows down convergence
of the learning process for the judgement network. This
may be because the judgement network used in our ex-

perimental system was too small in size. In spite of these



current uncertainty, as a result of considering many sys-
tems with various learning data and subnetworks, we
concluded that through experience the three subnet-
works mentioned above were generally satisfactory for
our study.

We also considered the following points for the orga-
nization of data.

e The broom balancing problem is symmetrical. So
the data for the right side can be considered equiv-
alent to the ones for the left side.

e The validity of giving examples of human failure
as the teacher signals.

However, in our study, we excluded data produced
by the operators and caused contradiction in the learn-
ing process. This seems to be a meaningful method for
our approach. The order of feeding the data did not in-
fluence control capability. We did not give any example
of human failure as the teacher signal.

9 Conclusion

This study was conducted to show the possibilities
of using composite neural networks to construct a sys-
tem for contolling a nonlinear object. By learning actual
data selected from human trial and error, and without
any other characterization, our system can acquire hu-
man knowledge for the control object. However, nu-
merous considerations needed for teacher signals, and
trial and error needed to determine the number of units
in a network, are problems that cannot be avoided to
In the
present study, we selected teacher signals so that states

make the learning process converge properly.

of the broom balancing system and the control signals
produced by the human operator can be expressed in
terms of either equation (1) or equation (2).

Excluding complication accompanied by the produc-
tion of teacher signals, and by letting each modularized
neural network learn individually and then combining,
the computational load on the network can be allevi-
ated. The advantage is that the frequency of learning
can be held low, and the relearning of the network can
be easily accomplished.

Furthermore , we confirmed experimentally that our
neural network control system exceeded in performance
a model based on modern contol theory. The advan-
tages of our system compared to those based on modern

control theory may include:
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1. It is not necessary to formulate system dynamics
precisely.

2. It is not necessary to make accurate measurement

of parameters.

3. It is able to control pendulums for wider regions
of parameters.

4. It is more robust to variation of parameters.

However, neural networks only learn how to give an

output for a given situation. We cannot determine if

a given condition produces control signals to keep the
broom upright, or at the optimum. Besides, since our
system could only produce control signals which are like
the ones in bang-bang control, that is, since there may
be a limit in the man-machine interface needed for pro-
ducing control signals, it may deteriorate modern con-
trol theory in some aspects. Thus, our next goal may be
to construct a more capable control system by enlarging
the scale of the judgement network.
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