Object-Oriented Model Management Support System

Park, Sung Joo

Kwon, O Byung

Deptartment of Management Science
Korea Advanced Institute of Science and Technology

ABSTRACT

Increasing concerns about model management system lead
to studies of user friendliness and model executions. This paper
presents model as object's method based on the Object-Oriented
Concepts which makes it possible to represent model’s operation
and enables general decision makers to identify and select more
appropriate models. This capability reduces the semantic gap
between decision maker and model builder. This view is also
able 1o execute models by way of automatic Ada code generation
and specific LP formulation for LINDO. A prototype system
is implemented in Pascal.

I. INTRODUCTION

Model (MMS) is an important
component of DSS. In the managerial domain, there are a
lot of decision makings to solve the various problems, and
decision makers develop models fitting and solving their
problem spaces, especially in MS/OR domain. Therefore a
clear structure for storing and using models is needed which
requires appropriate specification about models. The two
general definitions in MS/OR domain are as follows :
First, model is a seclective representation of the reality.
Second, model is a specification of a set of variables and
their relationships designed to represent some real system.
Many MMS researches were based on second definition
for it is easier to manage mathematical models than conceptual
models. They focused on the representation of models which
contributes to develop frames to represent and store the models.
However, satisfying the needs about the problem of
transforming stored models into executable forms become
critical when MMSs are to be used in the real domains.
The conventional model representation frame is model as
data and the frame is suitable to the abstraction and storing
models. However, it would be restricted to answer the questions
of identifying the operations of models and of joining models
with solvers naturally. Therefore, a concept of solver base
for storing application problems should be needed and
managing them will require additional laborous work. Blanning
[3] indicated that if model solution technique needs
programmimg, then the main issue can be on automatic

Management System

42

programming. ‘This implies that if a system which can transform
on-executable models in model base into executable models
automatically be existed then most problems relating solver
base will be resolved. Issues on executable modeling languages
are in progress [1,2] and has been employed quite successfully
in some domains. However, to build more powerful model
management, more steady view of models and its frames arc
required.

To address the above rescarch issucs, Object-Oricnted
approach is adopted in this paper for the reason that

1. while data in itsclf represents the abstraction of the
concepts, object stresses on the manipulation of concepts
[13] . Therefore model as object’s method can represent model’s
characteristics more natural than model as data, and

2. because object-oricnted programming languages are well
structured in comparing with another programming languages,
automatic code gencrations to exccute models are relatively
easier.

Several conceptual object-oriented schemes have been
suggested [9,15] in model management, and now having above
merits, in model

an extensive Object-Oricnted approach

management might lead to model cxccution issues [15].

Thus, the main research objective of this paper is to construct
a ncw Object-Oriented modeling cnvironment for case-of-
execute model management system without solver basc using
Ada code generation technique. We successfully built a
prototype, DOMS, to show how to implement the above frames
and found that additional profits about high modularity and
clear problem-model intcrface under Object-Oriented concepts

have contributions to automated modeling life-cycle.

. GRAPH BASED MODEL REPRESENTATION

Graph based model representation method is appropriate
for understanding models and their relationships. DOMS has
two graph-based model representations, Petri Net and Object-
Oriented Diagram. The former rcpresents model manager’s
input/output view and the latter represents user’s object-
operation view.

2.1 Two distinct views to models

Generally, system users are unfamilier with the model

manager’s technical jargon and even reject the whole problem
solving systems developed by model managers. Many MIS
researchers indicated the communication problems between
system developers and users. Ein-Dor & Segev [6] indicated
that the communication barrier between them will beat the
successful system development.
Lucas [11] said that MIS expert (now we identify him as
MIS manager) has difficulties in the system user’'s way of
understanding and using informations and capturing what the
users rcally need. DeBrabander [5] indicated that MIS specialist
perceives his work in the respect of systematic properties and
the uscrs are inclined to think it as operational characters.
DcBrabander concluded that the major reason of
communication problem between them is based on their
semantic gap.

In the model representation issues, we assume that the
general MMS user may be able to see his real system space
as a sct of Objects which have one or more methods. On
the other hand, model manager will sce real system as a
sct of fragments which have input, output, and process. Liang
[10}, Kats & Miller [8], Shaw [14] suggested input/output
view for modcls. Fig. 1 shows different approaches to
understand models.

2.2 Model manager’s view (Petri Net)

2.2.1 Why Petri Net ?

Petri Net can represent all possible model’s input/output
informations and solution paths. Unlike AND/OR Graph and
another graph based model representation methods, Petri Net
can rcpresent model’s dynamic view - - which model should
be sclected and when it to be selected.

2.2.2 Dcfinitions
Applying Petri Net, we define as follows in order to represent
models and their execution procedures.

Definition 1. PLACE
A circle node called Place reprsesents input or output
of a set of models.
Definition 2. TRANSITION
A bar called transition represents stand-alone model or
module which converts a set of input values to one
output value.
Definition 3. SOLUTION PATH
A solution path is a finite sequence of places that,
1. all these places are connected,
2. all these places are firable.

Finiteness implies that a solution path is acyclic and is
similer to Geoffrion’s generic graph in Structured modeling.
7

An example EOQ model is shown in Fig. 2.
Now how can we get solution paths from the Petri Net
? To answer the question, Reversed Petri Net, Problem

43

Queue, M/D Matrix are produced and defined as follows.

Definition 4.- REVERSED PETR! NET
In Petri net, if all edges arc converted their directions,
the Petri net is reversed.

Definition 5. PROBLEM QUEUFE.
Problem Queue (PQ) is a sct of Places that specifics
user’s problem and has clements as follows :

1 if i th data should be fired
w [

0 otherwise.

i=1,...... ,b m is the number of data

Definition 6. M/ID MATRIX
An M/D Matrix, {mij}, which is similar to T-Invariant
matrix in Petri Net is a matrix such that,

- -1 if i th data is an output of model j.
mij = P 0 no concerns,
-1 if 1 th data is an input of model j.

Fig. 3 is an M/D matrix which has a process informations
in Fig. 2. Using the matrix, we can do the following matrix
operation to get a solution path.

Bk = A * Xk + Bk-1

A : M/D Matrix
: Problem Vector (Bl :. Problem Qucucs)
X : Model Vector
k :iteration number (2 <<= k <<= n
of models)

=

, 0 is the number

Definition 7. ACTIVATED PLACE SET (APS)
APS is a sct of scquenced places that is fired by Probiem
Queues through matrix operations.

1 if i th data has been fired during
matrix operation time,

APSi =

0 otherwise.
Or,

1 if bij + PQi >0
APSi = [

0 if bij + PQi = 0

1 if i th data fired in the
where bij = [jth iteration,
0 otherwise.

Definition 8. SOLVING PATH MATRIX (SPM)
SPM, {Aij}, is a matrix such that,

number of data
total number of

aij, i=1,...,m m:
i=1,...,n n:

iterations
1 if ith data is fired in the
aij = l: jth iteration.

0 otherwise.

SPM embedds fired model’s input/output relationships

as follows.
-1 if ith data is required for
output in the jth iteration
ai+l,j - aij = 0 no concerns

1 if ith data is required for
input in the jth iteration

2.3 Model User’s view (Object-Oriented Diagram)

Object-oriented diagram, especially Booch[4]'s notations, is
one of the appropriate graphic representation method for object-
oriented paradigm and the papadigm is meaningful for a better
communication with model developer and MMS users.
Inventory and finance system can be conceived by the users
as shown Fig. 4.

However, there is no message passing in the figure. This implies
that the user don’t know and even need not know about
specific models, and their input and output relations. On the
other hand, Obiject-oriented approach has information-hiding
aspect hence, the MMS user need not know the information
about his(her) problem. He(She) only need to know problem
itself, named Problem Queue which was defined in the previous
section.

Also, APS seclects necessary objects and operations, and
SPM genecrates message passing. Being an object with its
operations selected by APS, then it is called that the object
and operations are activated. Because SPM has a information
about input/output view, the message passing can have process,
that is to say, it has a information when to activate. This
overcomes the lack of dynamic view of the traditional object-
oriented approach.

In Fig. 4, a box represents object that is considered as
the independent part of a real system. And a small box in
the objects which calls methods of the object represents model
or datum. If the method is model then input and output
message passing is performed, clse the method is for data
retrieval.

2.4 An Integrated Representation for model management
(OOD & PN Map)

Thus, two different model representations are introduced.
Now, to merge them into a unique diagram, we introduce
new graphcal representation called OOD&PN map which
integrate OOD{(Object-Oriented Diagram) and Petri Net. The
relations among them are shown in Fig. 5. As shown in the
figure, the map can represent how to join user’s problem
specifications under Object-Oriented paradigm and solution

44

User's View |Model Manager's View
Method ’ Output
Object in _a

Fig. 1 Different Views for Model

Get Economic
Order Quantity

Order Cost

O—

Demand

Retain

Externa] CostR Cost

Get Retain
Cost

Fig. 2 EOQ Model

Get Economic Get Retain
Order Quantity Cost

Economic

OrderQuantity 1

Order Cost)

Demand 1

Retain Cost 1 -1

External Cos 1

Rate
Price 1
Fig. 3. M/D Matrix for EOQ Model

Order Income

N Y
CGet Economic (Get Retain Cost

Order Quantity
! I
Fig. 4. Object Oriented Diagram for

EOQ Model

paths to solve them under input/output features of the models.
and then makes it possible to automate Object-Oriented code
generations.

oI. DOMS SYSTEMS FLOW

3.1 An Overview

Based on two graph representation schemes, DOMS has
two subsystems to create, store, select, and execute models
named model representation subsystem and model execution
subsystem. Model representation subsystem creates models
initially, updates thier contents or relationships, and stores
them in model base. Model base has model list, M/D Matrix,
and model contents.

Model execution subsystem selects an ordered set of modules
(that is, solution paths), activate both graphs, and execute
by the way of Ada code generation and runs them in the
solver environment.

3.2 Model Representation Subsystems flow

A model is represented by its class name, object name,
modcl name, input lists, and model contents. Fig. 6 is a
sample representation of the EOQ model.

Assuming that a model can be divided into a set of modules
having only one output, the procedures to construct a model
base including model integrations are as follows.

Step 1. Input model name (M).

Step 2. If M is found in existing data list then go to
stecp 4. If found in existing model list, then go to
3.
If not found, then go to 5.

Step 3. (update model) If any slots are to be changed,
then update them.
If object name is changed and it is not known,
then go to step 6.
Otherwise, go to step 7.

Step 4. (change data to model) Specify inputs, their objects

and contents.

If the objects are changed and are not known, then
go to step 6.
Otherwise, go to step 7.

Step 5. (new model) Specify model object, inputs, their
object,and contents.
If the objects are not known, then go to step 6.
Otherwise, go to step 7.

Step 6. (class input) Input the new object’s class name.

Step 7. (M/D matrix updating) Update M/D matrix to fit
to the changed aggregated input/output
informations.

Step 8. If more models are to be specified, then go to
step 1. Otherwise, Stop.

or

3.3 Model Execution Subsystems flow

45

Model execution subsystems arc based on conventional
modeling life cycle.

Phase I (Problem Ideniification)
Step 1. Describe problem in statcment form.
Step 2. Search model base. If not found, Stop.
Otherwise, go to step 3.
Step 3. Make Problem queues (PQ).
Phase II (Solution Path Finding)
Step 4. Using PQ, do matrix opcrations until all elements
that have
value 1 in Problem Vector (B) arc not able to be
transformed into 0.
Step 5. If operation stops, then gencrate solution path
and SPM.
Phase 1l (Solving Strategy Construction)
Step 6. Using SPM, detcrmine APS to retricve modcls
and query data.
Step 7. Using APS, ldentify solvers.
Phase IV (Executable Model Generation)
Step 8. Generate exccutable Ada codes using SPM and
APS.
Step 9. Generatc document for uscr how to run
executable codes.

the

Fig. 7 illustrates the process for model cxccution.

IV. CODE GENERATIONS

To solve specific problems, IDXOMS gencerates Ada code for
two reasons. First, Ada is strongly typed object oriented
programming language. Sccond, Ada is very structured, so
it can generate codes morc casily in comparing with another
languages. As shown in Fig. 6, a model consists of modcl
(output) name, object name, class name, input names and
their object names, and contents. These component can
corresponded to the components in Ada as follows.

OBJECT ======> PACKAGE

MODEL NAME ======> PROCEDURE
INPUT DATA ======> ELEMENTS
CONTENTS ======> BODY PART

The syntax is as follows. Capital letters arc reserved words
in Ada.

package_specification
PACKAGE model’s_object_name 1S
{ declarative_part}
END [model’s_object_name |
declarative_part ::= PROCEDURE model_query_declaration

| data_query_declaration

model_query_declaration ::
model_name (outpui_data_name : OUT
subtype_indication {, input_data_name : IN OUT
subtype_indication })

data_query_declaration ::= data_query_name (outpus_
data_name : OUT subtype_indication)
data_query_name := GET_data_name
package._| u=
PACKAGE BODY model’s_objecs_name 1S
{ model_statement | data_statement }
END [model’s_object_name |;
model_statement ::=
PROCEDURE model_query_declaration IS
use_of_generic_statement
BEGIN
{ procedure_call }
model_function ;
END [model_name |
procedure_call = [model_call | data_call]
model_call ::= inpus_model_name(outpus_data_name,
input_data_name {,input_data_name})
data_call = data_query_name(output_data_name)
with_clause ::=
WITH input_object_name {,input_object_name} ;
input_object_name ::= input_model’s_object_name |
input_data’s_object_name
use_clause 1=
USE input_object_name {,input_object_name} ;
main_subprogram ::=
PROCEDURE main_io 1S
use_of_generic_statement
{ input_data_declaration }
BEGIN
procedure_call ;
output_display_statement
END [MAIN_IO };
use_of_generic_statement ::=
PACKAGE identifier IS generic_instantiation;
data_statement 1=
PROCEDURE data_query_delaration IS
use_of_generic_statement
BEGIN
data_query_statement;
END [data_query_name |,
data_query_statement ::=
query_statement;
data_retrieval_statement;
data_retrieval_statement =
identifier. GET (data_query_name)
input_data_delaration :=
input_data_name : subtype_indication;
output_display_statement ::=
display_statment;
output_value_display_statement;
output_value_diplay_statement ::=
identifier. PUT (output_data_name)

Others are equivalent to Ada syntax.[8] The knowledges
about automatic code generations are implemented in Pascal.
An example about generated Ada code is shown in Fig. 8.

‘— e Model Namew

= Object name

Input nam‘

Input Object O

\ Contents

Ne———————”’ PN

OOD & PN Map

Fig. 5 OOD, PN, and OOD & PN Map

Model Name (Output Name)
Economic_Order_Quantity

Model Object (Output Object) : Order

Input Name : Retain_Cost Demand
Order_Cost

(Object Name) (I/S_A) (Customer)
(Order)

Functions : Economic_Order_Quantity :=
SQRT(2*Order_Cost*Demand
/ Retain_Cost) ;

Fig. 6 Sample Representation of EOQ Model

.
w =% Decision
MAKER
f l
CASE 1
CASE SEARCH BASE

Y
SOLVER
ICATION
} Y SAVETO
CASE BASE
) l
. PROBLEM QUEUE
MATRDX
OPERATION GENERATION

1

Fig. 7 Model Execution Procedures

V. EXAMPLES

Let's consider the following example as shown in Fig. 9.
Company A is selling goods that is delivered from Company
B, a suboontractor. So, A and B emphasize inventory
management and production planning, respectively. Based on
maximizing their sales profits, they want to contract for 3
months. By the way, the customer of B is only A and therefore
the inventory policy of A strictly influences on the production
planning of B. Managerial rate of the two companies are
constant. The decision makers want to solve these problems
using appropriate managerial models, however, he(she) don’t
know which model to use. The example for DOMS’s problem
solving processes from prblem specification to Ada code
generation and specific LP formulation are shown in Fig. 10.
In Fig. 10, italics are some data to be specified by users
and underlines illustrate internal operations. Generated Ada
code and LP formulations arc not displayed so as to show
man-machine interface in DOMS clearly.

VI. CONCLUSIONS

Despite the researches on MMS have drawn high attentions
in the past decade, model execution and user friendly MMS
issucs are remained to be solved. DOMS tries to provide some
insights about these issues as follows.

First, DOMS can manage two different views, input and
output view, and object- operation view and then it would
remove semantic gaps between decision maker and model
manager. In addition to removing the gap, DOMS can handle
a dynamic modeling problem which is the weakpoint of the
traditional object oriented approach. These trials imply that
richer user participation will affect more successful MMS
development.

Sccond, DOMS can execute models automatically by the
minimum problem specifications. So, an MMS user need not
know which models should be selected and which input will
be necessary for executing. Necessary informations are provided
in model specification phase, so additional information insertion
might not be required.

Third, inheritance and encapsulation are valid in DOMS
and it is possible to maintain model base naturally.

The characteristics would contribute to DSS which requires
never-ending development and which possesses communication
problem as a critical success factor. Also a view of model
as object’s method would give implications for distributed model
management in the organizational level.

[REFERENCES]
1. BHARGAVA, HK. and KIMBROUGH S.0., "On
Embedded Languages for Model Management”, Proc. of the
Twenty third Hawaii International Conference on Systems

Sciences, January, 1990.

2. BHARGAVA, H.XK. and Krishinan, R., “"A Formal

Input your Problem : Profit Maximization of Company B.
Case Search:
What is the core class of your problem? : Company_B
What is the core object of your problem? : l/S_of B
(Searching Casec Basc)
In below cases, are there any fitting ones?
(1) Optimal Production Planning
(2) Maximum Total Profit and Their Levels
(3) Get Total Revenue Choose : 2
O.K. Now I'll recognize your problem as Casc (2)
(Problem Queue Generation (PQ)) PQ := <1,0,0,0,0,0,0>

Matrix ration)
-1 1 1 0
-1 0 0 1
1 0+ 0 =1
1 1 0 0 0
1 -1 0 0 0
0 0
M/D MATRIX Xk 0 0
Bk-1 Bk
APS = «<1,1,1,1,1,0,0,0,1,0,0>
M - ;
10000
01100
00001
00010.

Are there any ones to usc Special Solvers? (Choose if any)
(Display elements of APS which valusc is 1)
(1) Get_B_Total_Profit (2) Get_Total_Cost.. Choose @ 2
that needs (1) LINDO (2) SPSS Choose @/
(Divide SPM according to problem solving strategy)

Please wait. I'm generating Ada Program for you....

(Ada code generation)

End of generation.

Please Compile Ada Code as follows:

ADA RUN2.ADS RUN2.ADB -M MAIN_IO -0 out MMSLIB
and you will get RHS value for LP Model

(Compile Ada Program and Run)

About GET_B_TOTAL_COST, Plcase Answer the questions.

1. TIME: DATA FROM YEAR : 1980 MONTH : |
2. TIME: DATA TO YEAR : 1980 MONTH : 3

3. WORKING MODE

(1) REGULAR (2) OVERTIME (3) RECEIVE
CHOOSE : 1,2
4. DELIVERY MODE (1) RATIO (2) ADD CHOOSE : /
DELIVERY QUANTITY : 32

(Generate LP Model and Call LINDO)
You get the value of B_TOTAL_COST

Please Compile Ada Code as follows:
ADA RUNI1L.ADS RUN1.ADB -M MAIN_IO -0 out MMSLIB
and you will get B_TOTAL_PROFIT

(Compile Ada program and Run)

Fig. 10 An Example

47

Approaches for Model Formulation in a Model Management
System"”, Proc. of the Twentity third Hawaii International
Conference on System Sciences, January, 19%0.

3. BLANNING, R.W. "A Framework for Expert Modelbase
Systems”, Proc. National Computer Conference, 1987, pp. 14
- 17.

4. BOOCH, G. Software Engineering with ADA, The
BENJAMIN/CUMMINGS PUBLISHING COMPANY, Inc,
1988.

5. DeBrabander, B. , G. Theirs, "Successful Information
System Development in Relation to Situational Factors Which
Affect Effective Communication between MIS-Users and EDP
Specialists”, Management Science, 1984, pp. 137 - 155.

6. EIN-DOR, et al., Managing Management Information
Systems, Lexington, Massachusetts, D.C. Health and
Company, 1978.

7. GEOFFRION, "An Introduction to Structured Modeling”,
Management Science, Vol.33, No.5, May, 1987, pp. 547 -
588.

8. KATZAN, H., Invitation to Ada, PETROCELLI BOOKS
Inc., 1982.

9. LENARD, M. "An Object-Oriented Approach to Model
Management”, Proc. Hawaii International Conf. On System
Sciences, 1987.

10. LIANG, T.P. "Development of a Knowledge based Model
Management System”, Operations Research, Vol.36, No.6,
November-December, 1988, pp. 849 - 863.

11. LUCAS, C. HENRY, "A Descriptive Model of
INformation Systems in the Context of the Organization”, Data
Base, 1973, pp. 27 - 36.

12. MILLER, L.W., N. KATS, "A Model Management
System to Support Policy Analysis”, Decision Support Systems,
Vol.2, No.1, March, 1986, pp. 55 - 63.

13. OSCAR, N., "A Survey of Object-Oriented Concepts”,
Object-Oriented Concepts, Databases, and Applcations, 1989,
pp. 3 - 21.

14. SHAW, M.J. et al, "Applying Machine Learning To
Model Management In Decision Support Systems”, Decision
Support Systems, Vol.4, No.3, September, 1988, pp. 285 -
305.

15. Suh, E.H., Suh, C.H., and Le Claire, B.P., “Object-
Oriented Structured Modeling for an O-O DSS", Working Paper
Series # 89-08, Pohang Institute of Science & Technology,
September, 1989.

48

