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1 Introduction

In the vibration analysis of structures in fluid such
as ships and offshore structures, the hydrodynamic added
mass considerably affects the result of analysis. There-

" fore correct evaluation of the hydrodynamic added mass
effect is reguired for an accurate analysis. But the cor-
rect evaluation of the effect is not simple because the
added mass varies with the mode shape of vibration as
well as the configuration of the structure.

The universal method employed to evaluate added
mass in ship hull vibration is Lewis’ method via the in-
troduction of 3 dimensional correction factor. But this
conventional method is valid only for beam-like vibra-
tion.

For the calculation of 3 dimensional complex vibra-
tion behavior, 3 dimensional finite element model of
structure is necessary. Therefore, for the analysis of
structure-fluid coupled system the method which is di-
rectly appicable to finite element structural analysis is
required for the evaluation of added mass.

The main objective of this work is to develop the
computer program for the structure-fluid interactive
vibration of 3 dimensional structure with complicated
configuration such as ships, offshore structures and so
on. For this objective following study was performed in
this work ;

1. A matrix formulation for hydrodynamic added mass
is derived by using boundary element method. This
matrix is directly applicable to the equation of mo-
tion of the finite element model of structure.

2. The equation of motion of structure-fluid coupled
vibration is derived by the combination of struc-
ture finite element method and fluid boundary ele-
ment method.

3. A computer program for analysis of the structure-
fiuid coupled vibration is developed. And the uti-
lity of the program is verified through numerical
calculations.

2 Hydrodynamic Added Mass Ma-

trix
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2.1 Boundary integral equation

It is assumed that the surrounding fluid is ideal,
the floating structure performs simple harmonic vibra-
tion of small amplitude with frequency w, and the wa-
ter depth is deep enough. With these assumptions
the governing equations of this linear boundary value
problem are formulated in terms of velocity potential
® = Re|¢(z,yz)e™™*) as follows. Where, cartesian co-
ordinate system as shown in Fig.1 is employed.

Laplace equation :

V2¢(z,y,2) =0 in fluid domain (1)

Homogeneous boundary conditions :

9¢

i K¢=0 ; freesurface condition (2)
3
Jim a—¢ =0 ; bottom condition (3)

. 1,0 . ..
Jim rﬂ(E +iK¢)=0 ; radiation condition (4)
where K is the wave number and r = (22 + y?)} |

Inhomogeneous boundary condition :

¢ .

= —swl - n. on wetted surface (5)
where U is the displacement vector on the wetted sur-
face and n is the normal vector on wetted surface into
the fluid domain.

We employ the Green function G(P,M;K) where M
denotes the source point and P the field point. It satis-
fies Laplace equation and homogeneous boundary con-
ditions. Applying Green’s theorem to the potential and
the Green function in the fiuid region we find the fol-
lowing bounduy integral equation :

$(P) / ¢(M)GG(P M) o

d(M
= /S ¢8(n )G(P,M)dSM, Pes. ©)

The Green function G(P,M;K) can be expressed as
follow:

G(P,M;K) = ——[ +5 L H(P M K) )

r= \/(IP - zp)? 4 (yp — ym)? + (2p — 2M)?

r'= \/(zp —zm)? + (yp — ym)? + (2p + 2m)?
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where H(PM;K) is a complex valued harmonic func-
tion regular in the lower half space. It is well known
that the solution of (6) with Green function (7) becomes
undetermined at irregular frequencies. Hong {9,10] pro-
posed the improved integral equation which possesses
pontrivial solutions at irreqular frequencies

#(P) 9G'
—-2—+ s.us, ¢(M)-——dSM

od(M) _,
L Mot resiar

The associated Green function G'(P, M; K) is
1,1 1
"(P,M;K)=-——{-+—=
G'(P. M; K) 4x { r
+H(P,M; K)[1 - §(zp - 0)5(2pm ~ 0)]} ®)
This improved equation is obtained by imposing the
following condition at the waterplane inside the body.

o2 _ [ 26 aipan=0 pes,

If we have an another assumption that the harmonic
frequency w is high compared with gravity acceleration
g (that is, high frequency approximation), the homoge-
neous boundary conditions (2),(3) and (4) are replaced
with followings.

V(o) = 0 (10)
¢(z,y,0) =0 (11)

Eq.(10) represents that the vibrating body does not
. affect on the fluid at infinity far from the body. And
Eq.(11) is the free surface boundary condition in case
of w>» 1.

For high frequency approximation integral equation
is the same as Eq.(6) and the Green function G{P,M)
is as follow:

G(P,M)=-—[-- =] (12)

It is noted that the Green function (12) does not
depend on w (or K) in contrast with (7) and (9) and
also that (7) and (9) becomes (12) when w approaches
infinity.

In this work the Green function (7) and (9) are
taken in Ref.[9].

2.2 Hydrodynamic force matrices

Using the discretized model of structure for F.E.
analysis, we can convert the intergral equation into al-
gebraic equation. If it is assumed that ¢ and 3-'% are
constant in an element (that is, constant element), the
integral equation (6) is converted as follow:

+Z¢, Ci; dS

=_.w2U n,[ GijdS; fori=1,--,N (13)
s=1

where,

N : total number of elements on wetted surface of
structure

U; : vibratory displacement of j-th element

n; : outer normal vector of j-th element
In Eq.(13) the body boundary condition (5) was sub-
stituted.

Matrix form of Eq.(13) is

A¢ = —iwBU, (14)

where,
A=lay), a 6” + / an‘: 228 4s;
B=[b], Bij= / G.;dS;
Si
¢ = {4}

Un = Upnj, normal component of vibratory displacement
iJg=12,---,N

For the case of improved integral equation (8), same
equation that Eq.(14) is formulated where,

= laif], a5= .,u+/ "45

B = [b.'g], Bit =[ G(’dS,
55

¢ ={4;}
Un = {Uni}
ij=12,-,N+NF
kl=1,2 N

NF is the total number of elements on waterplane of
structure.

From the linearized Bernouille equation and velocity
potential & , the hydrodynamic pressure on the wetted
surface of structure is

%
P(z,y,z,t) = -p'a'_t"'ngl

pRefiwge™ "] - pgRelU e~ "*|15)

]

Then, the virtual work due to hydrodynamic pres-
sure is

144

- /s  P(U)dSe

~pRel [, (g - gUL)e (U451 16)

For the discrete model Eq.(16) is expressed as

N
S Rel{(—iwpS;$;)6Un;

+ (pgS;jUsj)6Uns}e ™| (17)

where Sj is the area of j-th element.
Matrix form of the above equation :
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W = Rc(—iwp{JUn;}TS{é,:};'M
+ pg{8Un;}T S{Ups}e™™) (18)

where S§ = | diag S; ]
- From the Eq.(14)

{#;} = —iwA™' B{Un;} (19)
From the Eq.(18) and Eq.(19), the virtual work is
§W = —w?pRel{5Un;}T SA™' B{Upj}e™™"|
+pg Re[{8Un;}T S{U.s}e™""]

Therefore hydrodynamic force can be expressed as
follow

{Fy} = Re|l-w?pSA'B{Unj}e
+ pyS{Unj}e™"] (20)

The first term of Eq.(20) becomes complex when
the Green function in the boundary integral equation
is complex. This term can be rewritten in terms of real

" part and imaginary part as follow:

WM {Unj}e ™ + iwC{Ups}e™ it (21)

where,
M = |myj] = —pSRe[A™' B (22)
C = [cij] = ~wpSIm[A~' B (23)

The second term of Eq.(20) is always real and is ex-
pressed as follow:

—?{Un,')c-im (24)

where,’
K = [kij] = [pg - nes) (25)

The matrices M ,C and K can be defined as hy-
drodynamic added mass, damping and added stiffness
matrices respectively.

It is noted that the hydrodynamic damping matrix
C becomes null for the case of high frequency approx-
imation. It is the reason that the first term of Eq.(20)
is real in that case.

3 Natural Vibration Analysis of Cou-

pled System

The equation of natural vibration for the F.E. model
of structures without fluid effect is written as follow:

Where the subscript s denotes for structural system.
Imposing the hydrodynamic force (20) on the above
equation, we can obtain the equation of coupled system.

As an usual formulation of natural vibration the
hydrodynamic damping can be neglected. And in gen-
eral the hydrodynamic stiffness which means boyancy

aprink is negligible compared with strucutral stiffness.

In order to impose the hydrodynamic addad mass
on Eq.(26), coordinate transformation into F.E. coor-
dinates is necessary.

Un=TU @7

The transformed hydrodynamic added mass matrix
becomes as follow:

M;=T'MT (28)

Therefore the equation of coupled system can be
written as follow:

(M, +M,)U + K,U =0 (29)

The bandwidth of the matrix in the above equa-
tion becomes large because of M. Therefore, to solve
the above eigenvalue problem for large systems, mode
superposition technique is much more efficient than di-
rect method although some accuracy loses due to modal
truncation.

Let the natura! frequency without fluid effect be w;
and the corresponding mode shape ;. Then following
orthogonality conditions exist.

VM =M]=M
VK= [WM]=K (30)

In mode superposition U is expressed as a linear
summation of mode shapes ¢, i.e.,

U=4Q ,

where, Q ; modal coordinates

From the above relations the equation transformed
into modal coordinates can be obtained

(M + M3+ KQ=0 (31)
Where, .
My ="My

This equation is expressed as following eigenvalue
equation from the fact that Q = ge~"t

{K-Q*M+ My)}g=0 (32)

It is noted that the hydrodynamic added mass de-
pends on the frequency except for the high frequency
approximation. In this case iteration method can be
used to solve the nonlinear eigenvalue problem.

4 Numerical Investigations and Re-
marks

In order to check the utility of the methods de-
scribed in the previous chapters when applied to ship
vibration analysis, some numerical investigations were
performed.

4.1 Hydrodynamic added mass for the rigid
motion
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Numerical calculations were carried out for the two
models (hemisphere and half circle cylinder) to check
the accuracy of calculated added mass and to investi-
gate the frequenay dependency of added mass.

Hemisphere model (Fig.2)

1. In the case of high frequency approximation

2. In the case of using improved integral equa-
tion

3. In the case of using integral equation (6)

For the above three cases, Fig.3 shows the added
mass coefficient (Cm = added mass/} - §xpr3) with re-
spect to nondimensionalized frequency when the hemi-
sphere oscillates rigidly with unit amplitude.

In Table 1 calculated results for high frequency ap-
proximation are compared with the results in Ref.[6]
and also with exact solution.

Half circle cylinder (Fig.4)
1. In the case of high frequency approximation

2. In the case of using integral equation (6)

For the above two cases, Fig.5 shows the added mass
coefficient (Cpn = added mass/} - xpa®L) with respect
to nondimensionalized frequency.

From these results it can be said that

- In the low frequency ranges several irregular fre- »

quencies exist. They can be eliminted by using the im-
proved integral equation. But waterplane of the struc-
ture must be modelled into many elements in order to
insure the accuracy in some extended frequency ranges.

- High frequency approximation is, more simple than
the other cases and gives the good results except for the
very low frequency ranges. Therefore high' frequency
approximation can be adopted in almost ship vibration
analysis except for special cases.

- From present method hydrodynamic added mass
can be calculated with a good accuracy.

4.2 Natural vibration of half circle cylin-
der

Under the assumption of high frequency approxi-
mation, natural frequencies of the model in Fig.6 were
calculated and compared with those by conventional
Lewis’ method in Table 2. Fig.7 shows the correspond-
ing mode shapes.

All these calculations were carried out with the pro-
gram VIBDET. This is the finite element vibration anal-
ysis program developed by KRISO. The main function
of this program is to analyse the structural vibration
by substructure modal synthesis method.

Through this work the function to analyse the struc-
ture - fluid coupled systern was implemented in the pro-
gram VIBDET.

5 Conclusion

The major results in this work can be stated as fol-
lows;

o Finite element method combined with boundary
element method is useful in the vibration analy-
sis of complex structures in fluid such as ships,
offshore structures and so on.

¢ High frequency approximation can be adopted in
the almost coupled vibration analysis except for
special cases.

e For the very low frequency system improved in-
tegral equation can be used. But large number
of elements must be added on the waterplane of
structure to insure the accuracy in some extended
frequency ranges.

e Program VIBDET was developed, which can be
used efficiently to analyse the 3-D complex vibra-
tion behavior of general structures in fluid like
ships.
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Table 1 Added mass coefficient of hemisphere

Method

Added mass

Mxx

Myy

Mzz

Present Method
for high_frequency | 0.260
approximation

0.260

0.501
(+0.2%)

Hylarides at al[6)
(source distribu- 0.250
tion method)

0.250

0.491
(-1.8%)

* Mzz,exact :

0.5

Table 2 Comparison of the calculated natural
frequencies(Half circle cylinder,L/B=5.0)

z
¥y
z
4
[ g
. =V
Radsus : 10

Total No. of boundary elements on wetted surface : 36

-

Fig.1 Coordinate system - The free surface coincides
with z-y plane

In Using Lewis’method| Present c
Mode Air Method mr
Shape (Hz) 3D. corr. freq. (Hz)
factor (Hz) 0.8
2-node 5.450 0.585 4,328 4,350
3-node 8.153 0.520 6.612 6.277 0.6¢
4-node | 10,83 0.460 8.963 8.862
5-node | 13.47 0.409 11.35 10.88 0.4
6-node | 16.08 0.367 13.75 13.62
7-node | 18.62 0.332 16.13 15.62 0.2}
0
Cml|
: Y 0.6}
A

0.2

Fig.2 Model of hemisphere
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Fig.3 Added mass coefficient of hemisphere
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Total No. of nodal points : 410

Total No. of boundary elements : 338

Fig.4 Model of half circle cylinder
Fig.6 Vibration analysis model of half circle cylin-
der (vertical vibration)
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Fig.5 Added mass coefficient of half circle cylinder
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