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Modeling of Concrete Damage Subjected to Repeated Loadings
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1.0 Introduction

The concrete of damage permeates many br-
anches of concrete engineering. As concrete
is subjected to loading of increasing in-
tensity, it undergoes different phases of
damage, from microcracking up to ultimate
failure, Our capability to simulate this
process mathematically is desirable because
it allows us to predict the residual stren-
gth and serviceability of damaged or aged
concrete structures. Of particular concern
are those members that have been subjected
to several damaging load cycles such as may
be inflicted by a major earthquake.

A considerable effort has been expanded
by researchers to develop models of conc-
rete damage. In recent study[3} Chung et
al have critically evaluated 17 such mo—
dels, many of which are either of an empi~
rical nature or were derived originally
for metal structures. Most of these models
are not well suited to predict the resi-
dual strength of damaged concrete members.

It Is the purpose of this paper to re-
view some basic facts about concrete dama-—
ge and to use this knowledge to systemati-
cally construct a new model that is capa-
ble of simulating reasonably well the st-
rength and stiffress degradation that ac-
companies the damage process. Such a model
may then form the basis for rational seis-
mic risk evaluation of concrete structures.
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2.0 Damage and Failure of RC Members

Any attempt of devising mathematical mo-
dels to quantify damage in a rational way
should set out with a clear and precise de-
finition of damage, because "damage” is a
widely used word that describes all kinds
of different phenomena and is prone to sub~
Jective interpretation., In this paper, da-
mage of a RC member shall be defined to
signify a specific degree of physical de-
gradation with precisely defined consequ-
ences regarding the member’s capacity to
resist further load, A damage index is usu-
ally defined as the damage value normalized
with respect to the (arbitrarily defined)
failure level so that a damage index value
of unity corresponds to failure.

As an illustration, Fig. 1 shows a typi-
cal response of a reinforced concrete can—
tilever beam to progressively increasing
load cycles[6]. The stiffness of the mem—
ber decreases gradually, once the yield
capacity of the member has been exceeded.
It takes a significant further increase in
loading until the strength deteriorates as
well, i.e. when the force necessary to
cause a given tip deflection decreases in
subsequent cycles. Fig. 1 also demonstrates
the difficulty of defining failure. Thus,
any failure definition such as "a strength
reduction of 25% of the first yield load
level” is arbitrary. Even then, such a de~
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finition is not sufficiently precise,
since the apparent residual strength may
increase with further displacement
increase, Fig. 1.

The response of reinforced concrete to
load is complicated by the complex inter—
action between steel and concrete. This is
reflected by the numerous possible failure
modes in flexure, shear or bond. Conven-
tional reinforced concrete design philo-
sophy calls for such member detailing that
all but a few ductile failure modes are
precluded. For dynamically applied cyclic
loads it is difficult to predict the fail-
ure mode even for "properly” detailed mem-
bers, because of the effect of the strain
rate and the load reversals. Bond deterio-
ration and shear cracking typically pro-
gress more rapidly under cyclic loading
than flexural strength degradation. As a
result, reinforced concrete members sub—
jected to earthquake-type loads are more
likely to fail in bond or shear than in
flexure, even if properly designed for
monotonically applied loads.

The progressive accumulation of damage
in a material up to the point of failure
under repeated load applicstion is gene-
rally known as "fatigue”. Each load cycle
inflicts a certain amount of irreversible
damage and can be campared to the passage
of some time unit of the life span of the
material. If the material is subjected to
a history of varying stress levels, the
prediction of the fatigue life is much
more difficult., In this case, it is common
practice to utilize Miner’s hypothesis,
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i Ni
where Ni is the number of cycles with st-
ress level S; leading to failure, and ni
is the number of cycles with stress level
Si actually applied. This Eq (1) assumes
that the accumulation of damage is linear
and independent of the loading sequence.
In studies of low—cycle fatigue of rein-
forced concrete the number of load cycles
to failure is typically replaced by the
cumulative dissipated energy, which is
often normalized with regard to the energy
stored when the member is stressed to the
yield level. In reality, the amount of
energy dissipated in each cycle decreases
with progressive damage until failure. In
analogy to a S-N curve, given the nece-
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ssary experimental data, it would be possi-
ble to present a relationship between con-
stant deformation level Di and total ener-
gy dissipation capacity Ei. In a S-N rela-
tionship, Ni is a function of stress level
S; and can be determined experimentally.
For metals, such a function, drawn on log
scales, is generally approximated by a st-
raight line. Substituting the energy dissi-
pation capacity Ei for Ni, and deforamtion
level Di for stress level Si, the corres-
ponding Di~E; relationship is far from
linear, Fig 2. In fact, for very low defor-
mation levels, the load-deformation rela-
tionship remains linear, and no energy is
dissipated at all.

It can be observed from some laboratory
experiments[4] that the failure mode is
closely related to the formation of ini-
tial cracks that eventually may become
critical. Consider the two idealized load
histories of Fig 3. It is conceivable that
the four low-level load cycles of history
"a” introduce & cracking pattern which re-
sults in a different kind of damage due to
the final strong load cycle, than if this
same strong load cycle were to be applied
to the undamaged member, as in history "b”.
Thus, not only the total energy dissipa-
tion capacity of the member is dependent
on the load history, but its failure mode
might be as well.

3.0 Previous Damage Models

Numerous models have been proposed in the
past to represent damage of structural mem—
bers or entire structures. Some of these
were derived for metal structures. Because
of fundamental differences between rein-
forced concrete and homogeneous materials
such as steel, these models are not di-
rectly applicable to reinforced concrete.
Other models are based on empirical damage
definitions[8}. These all but disregard
the mechanics of the materials invelved
when subjected to cyclic load, and there-—
fore do not lend themselves to rational
predictions of the strength reserve and
response characteristics of a structure
with a specified degree of damage.

Several investigators have introduced
energy indices which are functions of a
few selected parameters[4]. Other notable
examples are the damage ratio introduced
by Lybas and Sozen[5], and the flexural



damage ratio and normalized dissipated
energy used by Banon(2] as basic damage
state variables to derive contours of
equal proabability of failure. Of the more
recent. damage models, the widely cited
model of Park and Ang{7] should be noted,
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where & max = maximum deformation experi-
enced so far, Su= ultimate deformation
under monotonic loading, Qy = calculated
yield strength, dE = dissipated energy in-
crement. A= (- 0.357 + 0.73 1/d + 0.24 no
+ 0.314 P+ ) 0.7F% with 1/d = shear span
ratio, no = normalized axial force, pw =
confinement ratio, P longitudinal steel
ratioc. In Ref 3, Chung et al critically re-
viewed these and many other damage models.

(2)

4.0 A New Damage Model

4,1 Stiffness Degradation

Under load reversals, a RC member ex—
periences a progressive stiffness due to
concrete cracking and bond deterioration
of the steel-concrete interface primarily
in the plastic hinge. The model of Roufai-
el and Meyer[9] is used to simulate this
behavior. It takes into account the finite
size of plastic regions. Fig 4 illustrates
the various branches of hysteretic beha-
vior: 1) elastic loading and unloading; 2)
inelastic loading; 3) inelastic unloading;
4) inelastic reloading during closing of
cracks: and 5) inelastic reloading after
closing of cracks. In a reversed load
cvcle with high shear, previously opened
shear cracks tend to close, leading to an
increase in stiffness and a characteristic
"pinched” shape of the moment-curvature.
Roufaiel and Mever have modeled this effect
by introducing the “"crack-closing” moment
M*,, associated with curvature ¢p*. If
shear stresses are negligible and the hys-
teresis loops are stable during cyclic
loadirg, no pinching is likely to occur
and branches 4 and 5 will form a single

straicht line.
4.7 Strength Degradation

In addition to stiffness degradation, RC
meshers experience strength degradation

ader cyclic loading bevond the yield
tevel. Atalay and Penzien[1] had noticed
some correlation between commencement of

strength degradation and the spalling of
the concrete cover. But Hwang’s expe-
riments(4] showed that strength degrada-
tion can start at considerably lower load
levels. Even for loads slightly above the
yield level, damage and strength degrada-
tion can be observed, provided a suffi-
ciently large number of load cycles is
applied. It is, therefore, suggested that
strength degradation is initiated as soon
as the yield load level is exceeded, and
the strength degradation accelerates as
the critical load level is reached., For
this purpose, a strength drop index, Sd4,
is proposed[Fig 5],

AM [ b - ¢y ]“

AMe (ISf - d)y
where AM = moment capacity{(strength) re-
duction in a single load cycle up to cur-
vature ¢y, AMr fictitious moment capa-
city(strength) reduction in a single load
cycle up to failure curvature ¢ ¢ For
analysis purposes, the strength drop is
measured from the second branch of the
primary moment-curvature curve. The actual
strength reductions in a single load cycle
are indicated by the shaded area in Fig 5.
For the parameter w, calibration studies
f3] suggest a value of about 1.5 to 2.0.
Dencting the strength drop, AM = Sq4AMr,
in a single load cycle to some curvature
b, as

Sa = (3

— w
AM:[(¢f-¢y)p(m>a+my—m][34—’1] (4)
d){—d)y ’
the residual strength after this one load
cycle, Fig 4, is given by

i) = M(p) - AM
My+(p~py)p(EDe—AM (5)

In order to incorporate this concept of
strength degradation into the hysteresis
model, an imaginary point with coordinates
(EE; ,ﬁ:). is introduced, at which the
load-deformation curve is aimed during re-
loading, Fig 5. Details are given in Ref

3

4.3 Definition of Failure

For RC members undergoing cvclic load-
ing, several investigators{1,4,7] have de-
fined failure as the point where the mem-
ber strength(moment) has dropped below 75%
of the initial yield strength(moment). But
if the member is subsequently loaded beyond
this maximum displaceeent{curvature), its
moment can be observed to increase well



above the 75% levelld4], even though it has
already been assumed to have "failed”[Fig
1]. For this reason it is necessary to re-
late the failure definition to the actual
strength reserve or residual strength,
which is a function of the experienced
loading histroy.

First, the failure moment Mf and the
corresponding curvature ¢ ¢ is defined to
be the curvature at which the concrete’s
crushing strain is reached. Given the com-
plete stress-strain curves for steel and
concrete and the cross-sectional dimen—~
sions, it is relatively straightforward to
compute the monotonic moment-curvature
curve, by determining the moment M;i asso-
ciated with any curvature, ¢ i[3]. The
failure moments for other curvature levels
are assumed as

29
Mei = M ——m—— (6)
$i+1.0
where Mfi = failure moment for given cur-—

vature level ¢ i, Ms failure moment for
monotonic loading, $i = ¢ i/ ¢t (curva~
ture ratio), and ¢ ¢ = failure curvature
for monotonic loading. According to Fig 6,
the failure moment Mt¢; decreases with
smaller curvature levels ¢ i, i.e. larger
strength drops from the monotonic loading
curve are needed to lead to failure., If
the total strength drop down to the fail-
ure moment Mg at some curvature ¢ i is
known, the number of cycles for this cur-
vature level needed to cause failure, can
be deterained.

4.4 New Damage Index
Based on the above definition of fail-
ure, a new damage index, De, is proposed
as a measure of damage sustained by RC
members undergoing inelastic cyclic load-
ing. It combines a modified Miner’s hypo-
thesis with damage modifiers, which ref-
lect the effect of the loading history,
and it considers the fact that RC members
typically respond differently to positive
and negative moments:
nit

De =7 @it—— + ai™
i Ni*

ni~

Ni~

where i indicator of displacement (cur-
vature) level, Ni = (Mi-Mfi)/AMi = number
of cycles to cause failure at curvature
level i, ni number of cycles actually
applied at curvature level i, ai = damage
modifier, and + and - are indicators of

(7

loading sense. The loading history effect
is captured by including the damage mo-

difier « i, which, for positive moment
loading, is defined as
give LKt $itriot (8)
n;*t x kit 2¢ it
Y Mig* / nit Pitrdpi-gt

Mig*=0.5(Ni*-1)* AM;+ 2¢i*
where ki;* = Mij*/ ¢ it is the stiffness
during the j-th cycle up to the load level
i, ki* = ¥ kij*t / Ni* is the average stiff-
ness during N;* cycles up to load level i,
and Mij* = Mit*-(j-1) AMi* is the moment
reached after j cycles up to load level 1i.
The definition of Eq (8) needs some expla-
nation. The energy that is dissipated
during a single cycle up to a given curva-
ture level decreases for successive cycles.
That means the damage increments also de-
crease. In a constant amplitude loading
sequence, the first load cycle will cause
more damage than the last one. Therefore,
the a i-factor decreases as load cycling
proceeds, being a function of the stiffness
ratio., The factor (@ i*t+¢i-1*)/2¢ i, is
necessary to normalize the damage incre-
ments in the case of changing lcad ampli-
tudes. For negative loading, the damage
modifier is defined similarly.

To illustrate the accuracy, with which
the proposed mathematical model of Eq (7)
can simulate hysteretic response of RC mem—
bers, many experimental results have been
reproduced numerically in Ref 3. Agreement
between numerical and experimental results
was in general excellent, Fig 7 represents
an example that is typical for the kind of
agreement achieved. Table 1 contains the
cumulative damage indices computed for the
same specimens tested by Hwang and Ma et
all4,6]. It is noteworthy that in all but
the last case the damage index computed
after test termination correlates reasona-
bly well with 1.0, which corresponds to
our definition of failure. In some cases,
the testing proceeded well beyond this
point, e.g. Specimen S22. This means that
testing had continued beyond the point of
(artificially defined) failure, Other spe-
cimens, most notably B35, appear not to
have failed at the time the test was ter-
minated.



5.0 Conclusions

A new damage model and associated damage
index have been developed which are belie-
ved to be more rational than previously
proposed models and take into account fac-
tors such as loading sequence which are
usually ignored in others. An accurate de-
termination of damage is essential for
meaningful nonlinear dynamic analysis of
concrete structures, because the damage
index is closely tied to the strength
reserve of a member, after it has under-
gone large inelastic cycles.
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