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Power system stabilizer using VSS-MFAC
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Abstract

In this paper we present a variable structure systeme-model
following adaptive control (VSS-MFAC) mcthod for an uncertain
turbo-generator system which is apt to suffer from the
unmodeled parameter uncertainties and the external
disturbances. The simulation results for the power system
stabilizer(PSS) exhibit robust adaptive model-following properties
well in the PSS designed by the proposed VSS-MFAC
methodology when a step change in the mechanical torque and a-

parameter variation is applied.

1. Introduction

In order to improve the power system stability, additional
stabilizing signals are introduced into the excitation control
system. The controller that generates the stabilizing signal is
called the power system stabilizer(PSS). The turbo-generator
systems including exiter and governor in the large-scale power
systems are apt to suffer from the uncertain parameter variations
and the external desturbances. If the sufficiently severe
disturbances occur, the turbo-generator system may be led to
rapid acceleration of one or more generating units and will lost

their  synchronism.

Morcover, becausc of the

inherent
characteristics of changing loads, the operating condition of the
these systems may change very much during daily cycle. As a
result, a fixed controller which is optimal under operating
condition may no longer be suitable in another status. Recently,
the sliding mode control theories have been developed over the
last twenty years which offers a effective way of the design of the
transicnt stability controllers of a large scale power system[1].
On the other hand, various adapfive control techniques have

been proposed for dealing with large parameter variations[2-4].
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In this paper, we introduce the robust VSS-MFAC PSS for the
uncertain turbo-generator system which subject to the unmodeled

plant uncertainties and the external disturbances.

2. Model following adaptive control

The state equation of the parameter uncertain system with

external disturbances following the reference model can be

defined as

(1) = B, (1) + Bu,(6) + Hoylr)
= (4, + BA(r (D) %, (1)
+ (B, + AB,(s(1)) u,(1) + Hylt) a

where x,(1) ¢ R is the plant state, u,(f) ¢ R™ is the plant
control input, r(t) ¢ R c R” represents the plant parameter
uncertainty, s{t) ed c -3 represents the input connection

parameter uncertainty, and AA(-) and AB(-) are assumed to be

continuous matrix functions of appropriate dimensions. And,

where Ilpd(l) is the external disturbance. It is assurned that

a) ploynominal B, is Hurwitz ;

b) degrees n and m (m < n) of A, and B, respectively, are
known,

c) upper and lower bounds of the unknown plant parameters

are available,

that is AP—AAP<AF<AP+AAp,p=O, ........ n=1
BP—ABP<BP<BP+ABP,p=O, ........ m.

And, the reference model state equation for the controlled plant

is given in general terms of the system

x,() = Ax, () + Bu, (1) @)

where x,, ¢ R" is the reference model state and u,, ¢ R is the
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reference model input, A, is a stable matrix and the
pair(A,,, B,,) is assumed completely controllable.

The plant control input can be represented by

1p(6) = ~Kpxy() + Kpzo(1) + k() = 8 ©)
where Kj = [k pe.ocrbn)
Ky = [pyperees]
The error between the model and the plant is

e(t) = x,(t) - xp(t) =0 and é(r) = £,(r) — %5,(r) = 0. It can
casily be shown that

1) = i(1) — &) = 0
= [An = &, + B, (K] — KD 5,(0)
+ [Bu — Bk up() + (53— Hiy(0)] )

3. Variable structure—model following adaptive control

In general, the discontinuous control has the form

uy if 5()>0

= )]
"P‘(‘)_ “,; if 5()<0

" Suppose the sliding mode exists on all hyperplanes.- Then, during
sliding

s{e) = CTe = 0and s(e) = CTé = 0 6
From s = 0, the equivalent control can be represented by

() = (CT B,) " CTlAne (1) + (Ay—A,)x5,(0)
+ Bun(t)—Hyy(1)] M

assuming det [CT B #0.
By comparing (3) with (7), the condition can be represented
by

KL= (C"B,)' C"4,,

Ky =(c"B,)7CTa, ®
k, = ("B "B,

8 =("B)'C"H,,

The equivalent control input u,.(t) of (7) is expressed as
(1) = —Kox (1) + Koz (0) + k(1) — 8 )

By substituting (8) into (4), the error differential state equation
of sliding mode is given by
é(r) = [An = B)(CTB,) ' CTAL (1) + [(An ~ 4,)
+ By(K} = KDL 5,(0) (B — Byk,) ua(r)

(10
+ B8 — Hy

If the perfact model matching conditions from (10) arc satisfied,

we obtain
é@0) = [1 = B,(CTB,)'CT) Ae(t) 1y
The control input of the plant is expressed by

(1) = = K2(1) e() + K1 (6) %, (1) = k(DYu(0) + 8,(1)]
+ ko @ [s(e)]] sgn] s(e) ] (12)

where k is a class K function.
From the above equation (6), the condition can be

represented by

is = [CTA, + CTBKI(N] e(t) 5(e)
+ CT(Ay — A)) + CTBKI(1)] x,(5) 5(e)
+ [CB,, = CTBk ()] up(t)s(e)
+ [CTB3,(1) - CTH (1)) s(e)
+ CTB, ké |s(e)| ®[ls(e)l)
= — m|s(e)| P[iste)(] (13)

wherc ) is a positive constant.
And, the necessary and sufficient condition for the existence
of a sliding mode on s = 0 can be represented by
[CTA, + CTBKI(D] e(t)s(e)
+[CT(Ap — A,) + CTBKI(1)] 5,(1)s(e)
+[C7B,, = CTB k(1)) un(t)s(e)
+ [CTB,3,(1) — CTH (1)) s(e)
+ (C"B, k8, + n)|s(e)| ®[ls(e)}
=0 (¢L))

The switched bgains from (14) can be written as

kY = min[-b7" (¢,y — a)] if (t)s(e)>0

15
k;-=max[—b-1(c,_l—a,,-,,)] if efr)s(e)<0 )
kg = min[-b7" (a,y — a)] if xy(1)s(e)>0

16
ky = max [—-b—l(a"‘ -a)] if ‘xﬂ(l) s(e) <0 (6)
k) = max[b7b,] if ug(t)s(e) >0
- 4 . an
k; =min[67b,] i uy()s(e) <0
8 = min[-b7'd()] it s(e)>0
8 = max[-b7l()] i s(e) <O (8)

Then the 'nonlinear term is expressed as an exponentially

decaying tcrm
@ [ls(e)]] = exp=1/ |s(e)l] (19)

By substituting(19) into (12), the necw control input can be

represented by
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u, (1) = ~[K(1) e(t) + KL(1) %,(t) = K, (un(t) + 8,(1)]

+ kb exp[-1/|s(e)|] sgnl s(e) ] 0

Then, the structure of the boundary layer controller is

1) = ug(®) i Jse)] < A @1

as the so-called boundary layer of thickness A. The offset
resulting from this approximation is rejected by a proportional-
integral(P-I) controller included in the control input.
H
up(t) = ~Kp s(e) — K,f s(e) dv. (22)
. A
where Kp and K; are the gains of the P-I controller.

From (20-22), consider the new control input u, (1)
nw

o O = = (LRI €0) + KL 5,(0) = Ky 0un(0) + 8,(0)]

+kbexp[-1/s(e)l sgn[ s(e) 1) for [s(e)| = A
or, @)
upm(t) = u (1) +up(r) for js(e)l <A (24)

4. example

The éorresponding block diagram for the system of a single
synchronous machine infinite bus system connected to a large
power system through an external impedance is shown in [1].
Then the corresponding plant matrices for a PSS following the

reference model from (1) are given by

~0.1580 —5.6930 -0.0560 0.1026 0

0 0 -0.1070 0 0
A,=| -01023 15658 —0.0376 00725 0

-1000 0O 4] -19 ~1000

-29 0 0 -0.600 —-30

8, [o 00 99 29]’

and the plant parameter uncertainties from (1) are generated by

the random number generator

Ady BAp B A4y g
0 0 Apo

Ady MMy Ay DAy O
By 0 0 A4, dMgs
AAg 0 0 AAy AAgs

ABP=[0 0 0 AB, A35]T

wherc the bounds for the uncertain parameters Mpy(') and the

uncertain gains ABP'(t) of the system are assumed such that

-0.0001 < AAPU < 0.0001, -0.0001 < ABP, < 0.0001

Then, a step change of a terminal voltage and a mechanical

torque is given by
- T
Hy= {0003 0 0003 0 0]

And the reference model matrices of a PSS from (2) are given
by

-0.1590 -5.7165 -0.0566 0.1125 0

0 0 -0.1080 0 0

A, = | —0.1033 157.5822 -0.0368 0.0732 0
~-1000 0O 0 -20 —1000
-30 0 0 -06 -3t

8,=0 00 100 3|

Then, the switching surface vectors arc .. v

5= [340 -0.0002 57952 003 —0.0042]7

The switched gain values are chosen in such a way that the

control effort required is moderate and ¢! - . values are given by

Khi=-03 k7= 03 Kjp= -04 Kp= 04
Ki=-03 k3= 03 Y= -0001 K= 0001

Khi=-03 K5= .03

+

K}=-01 k7= 01 Kh= -04 Ky= 04
KL= -04 K3= 04 Ki= -001 K = .001

+

S KL= -08 K3= 08

5. Simulations

Fig. 1 shows the dynamic performance of a PSS when a step
change in the terminal voltage of 0.003 p.u is applied. Fig. 2
shows the corresponding error waveform between the model and
the plant. Fig. 3 shows the dynamic performance of a PSS when
a step change in the mechanical torque of 0.003 p.u is applied.
Fig. 4 shows the corresponding error waveform between the
model and the plant. And, the simulations are carried out.for a

time interval of At = 0.00014[sec].
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Terminal voltage [Av,]
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Time step

Fig. 1 Terminal voltage (av,) waveforms.
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Fig. 2 Asymptotic error waveform for terminal voltage.
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Fig. 3 Mechanical torque waveforms.
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Fig. 4 Asymptotic error waveform for mechanical torque.
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6. Conclusions

When a step change in the terminal voltage and in the

mechanical torque is applied, the proposed VSS-MFAC exhibits

insensitivity to the unmodeled plant parameter variations and the

cxternal disturbances when operated in the sliding mode. The

simulation waveforms for a PSS are clearly shown in the results

that the asymptotic error waveform behaviour of the mechanical

torque and the terminal voltage between the model and the plant

for the uncertain turbo-generator system is achieved with a model

following adaptation law.
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