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I. Introduction

A  mcthod for mapping rings, grids, ftrees and
multidimensional meshes into hypercubes has been proposed
.[1,2,3,8]. Recently, a partial sum problem is mapped into a
hypercube [S}]. Since conventional mapping methods based on
the ordinary binary number system are ipefficient due to the
irrcgular and excessive interprocess communication (IPC}), a
mapping method based on the reflected Gray code (RGC) has
been utilized {1,2,3,5,7]. In this paper, a uniquc RGC is
utilized to facilitate a mapping for partial sum problems. It is
shown that the mapping provides the minimum number of IPC.
A routing algorithm is provided to climinate contentions during

the IPC.

1I. Partial sum problem
A gencral first-order linear recurrence system has the form

X4y = apxg + by
A partial sum x; is defined to be Ezslbk under the assumption
_ that all the a’s arc 1. Computing all the partial sums is a
' special case of a first-order lincar recurrence. For simplicity of
the mapping and the routing algorithms for regular and reduced

number of IPC, a special case is considered. However, the

_result for the partial sum problem can be easily extended to

general first-order recurrence systems. The general first-order
recurrence system is very important in various engincering
problems, including partial differentinl  equations,  spline

approximations and Kalman filters.

An n-cube is an n-dimensional hypercube consisting of 2"
podes. Let 11(p,q) denote the Hamming distance between
nodes p and g. The nodes arc labeled by n-bit binary numbers,
from 0 to 2°-1; in general, two ntx.jcs @ and b arc adjacent if
the Hamming distance /{{a,b) is 1. 'The Hamming distance
between two nodes is the number of bits in whiéh their node
labels differ. For example, the Hamming distance between

[1110] and [1010] is 1.

An algorithm to find all the partial sums has been presented
{4.6}. Notice that the node [010] computes x, since the binary
number is 2 duc to the definition of ordinary binary number
system. A partial sum x; is computed in a node i, wherc { is
mapped into a binary number [i]. During the first IPC stage,
cach node is to communicate with a next node in the scquence.
For example, the node 0 {000] is to communicate with the node
1 [001]. In this case, the Hamming distance is 1. However, for

cxample, the Hamming distance between the nodes 1 {001] and
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2 [010] is 2. It states that the node 1 [001] should communicate
with the node 2 [010] via the nodes 0 [000] or 3 [011].

Morcover, the Hamming distance between the nodes 3 {011]
and 4 [100] is 3. Until the communication is complcted, the

relevant nodes arc Icft to be idle.

Proposition .1: The total Hamming distance for thc partial
sum problem mapping into an n-dimensional hypercube bascd

on the ordinary binary number system is 3,7 _ k.
Proof: See [5].

The above proposition statcs that the total Hamming distance
is excessive. It rcsults in an excessive IPC. The Hamming
distance varies from 1 to n, which is very irrcgular. It requires
different IPC mechanism for each node. The side cffect can be

resolved with a proper mapping method.

III. Hypercube mapping

A Gray codc ia a binary codc in which scquential numbers
* differ in one bit position only. To provides a mapping of a ring
and a mesh into ﬁn n-dimensional hypercube, an RGC has
been introduced [1,2,5,7). The code has the property that the
Hamming distance between the first and the last node in the
scquence is also 1. A binary number [p], denotes an RGC of
an ordinary numbcr p. Now, a partial sum x; is computed in the
node i, where i is mapped into an unique RGC. Then notice
that the node [011], computes x, rather than x4

At the first stage in the new hypercube mapping, the
Hamming distance is all 1. At the sccond and the third stage,
the Hamming distancc is all 2. The total Hamming distance is
S, wﬁich i; smaller than the conventional load assignment
scheme by 1 when »a is 3. Moreover, the routing algorithm for
the IPC to-be presented in the next scction is regular at cach

stage.

Now it would be interesting to consider the lower bound on
the total Hamming distance. Assume that /i (p,r) = u and
H(r,g) = v where u and v are positive integers such that

u = v. Then, /1(p,q) has the following propertics.

Property 1: H(p.q) is a positive integer which belongs to the

set {u—v,u—v+2, u—v+4, ..., utv})

Property 2: If 71(p,q) is to be odd, it is required that cither «
or v should be cven and the rest odd. Also, if H(p,q) is to be

even, it is required that both « and v should be cven or odd.

Optimality of the mapping for the partial sum problem bascd
on the uniquc RGC to the conventional mapping based on any

binary number system is shown in the following propositions.

Proposition 2: The total Hamming distance for the partial
sum problem mapping into an n-dimensional hypercube bascd

on the unique RGCis 2n—1.

Proof: Sce [5}.

It is shown that the total Hamming distance for the partial
sum problem map.ping into an n-dimensional hypercube based
on the uniquc RGC is smaller than that of based on the
ordinary binary number system. Now the total Hamming

distance 2n — 1 is shown to bc minimum.

Proposition 3: The total Hamming distance for the partial
sum problem mapping into an n-dimensional hypercube bascd

on any binary number system is no smaller than 21 1.

Proof: Property 1 implics that if the Hamming distances
between communicating nodes at some stage are all 1, then
those at higher stages cannot be smaller than 2. Furthcrmore,
the maximum Hamming distance for any lower stage should be
greater than 1 because all of the Hamming distances for any
lowcr stage can be neither even nor odd according to Property
2. Thus the total Hamming distance with I; stagcs is no smaller
than 2n-1. Q.ED.

IV. Routing algorithm

At the first stage, cach node should communicate with the
ncxt node in the sequence. At the kth stage where & is an
intcger over 1, cach node (p), should communicatc with a node

(p+2‘")c. Howcver, there arc two shortest routes, which can
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cause contention. For example, (0), [0000], should
communicate with (2), [0011], via (1), [0001], or (3), [0010],
at the third stage. Notice that the node (1), is sclected as an
intermediate node for the IPC since the node label is between
the source and the destination node labels, respectively. Other

intermediate nodes are sclccted in this way.

Now, the problem is how to determine intermediate
candidatc nodes. First, compute (p), * (p+2"")c where (p), is
a source node, where ™" denotes the bitwise exclusive OR
operation. Then, we can obtain (2")6. The infcnncdiatc
candidate nodes differ from the sourcc and the destination
nodes in the bit positions that are nonzero in (2*). For examplc,
with the source and the destination nodes [1101], and [1011],,
respectively, the intermediate candidate nodes arc obtained by
[1111], and [1001].. We can obtain [0110], from
[1101], * [1011],. There arc four nodes [1001],, [1011],,
[1101], and [1111]_, which are all differ in the sccond and the
third bit positions from [0110],. Howcver, the second and the
third nodes in the four nodes are the source and the destination
nodes. The above-mentioned routing algorithm is summarized

as follows:

begin
Route from () to (1), == (s+1)..

fori:= 1ton~1do

V. Conclusion

It is evident that, due to the mapping method based on the
unique RGC, the number of IPC is minimized considerably for
partial sum problems. Morcover, regular communication is
possible. No contention has occurred during the IPC.

Moreover, no node is left to be idle.
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