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ABSTRACT : This paper describes a new algorithm based on
design sensitivity analysis for optimal shape design of
electrostatic devices, The deSign sensitivity, the variation
of the object function with respect to the design variables,
lis derived by using implicit differentiation and direct
boundary element methods,

The proposed algoritha is applied to the optimal shape
design of a concentric cable and the rod electrode enclosed
by earthed case, It is shown, from the numerical results,
that the algoritha is very usefull for. the optimal shape
design of the electrostatic devices.

1. INTRODUCTION

The inverse problems in electrostatic field theory have
been receiving a considerable attention, Among the inverse
problems, a popular and difficult one is shape optimization
problens(1,2,3].

To date, the finite element method has been extensively
used for the analysis of the electromagnetic devices and
successfully applied to some shape optimization
problems[4,5]. However, From the view point of design
sensitivity emalysis, the wmethod is not eppropriate because
it often requires to redefine the finite element meshes at
each iteration step and can not provide accurate solutions
on the boundary enough to obtain the accurate design
sansitivity[s, 7).

Very recently, the boundary element method was recognized
as a more attractive technique and good alternative to
finite element method In  design sensitivity analysis
because it can give more accurate solutions on the boundary,
which are shomn to yield wmore accurate design
sensitivity. [6,7] Moreover the method requires much less
effort in regriding due to shape change than the finite
element method and reduces dimensionality by one[8].

In this paper, a shape optimization wethod with design
sensitivity analysis is formulated employing the boundary
element method and applied to the shape optimal design of
some electrostatic devices to demonstrate its effectiveness
and useful lness.
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2. BOUNDARY ELEMENT FORMULATION

The essence of the boundary element method is the
transformation of the governing differential equations into
equivalent sets of integral equations, The basic integral
equations for the electrostatic field problems are derived
as the following form by using the saciar Green’s theores
and point-matching method{8].
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where C{r) is constant determined by the interior angle at
point r, ¢ and ¢ are electric potential and its normsl
derivative, G and Gy are fundamental solution and its normal
derivative, r and r’' are field and source points
respectively, n is outward unit pormal vector, and ¢
becomes  £1/62 on interface between two different regions
and 1 on other boundaries,

Eqg. (1) can be reduced to the following numerical equation
by discretizing the boundary contour into m series of
constant elements and substituting the field variables of
each elesent[8],1.e.,
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where J is Jaccbian matrix and M is the musber of elements,
Since rj refers to the mid-point of j-th element, the
collocation is carried out for all the elements on the
boundary, which allows eq.{2) to be expressed in the form
of matrix equation, Applying the known boundary conditions
to the obtained matrix equation, we obtain

K1fx] = [F] (3)
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where [K] represmt.s‘(ha systes matrix, [X] and [F] are the
unknown state variable and the forcing vectors respectively.

3. DESIGN SENSITIVITY
The most important part of the design sensitivity analysis
is the evaluation of the design sensitivity defined as the
implicit differentiation of the object function with
respect to the design varisbles, The object function, which
has its minimum value at optimal shape, can be defined as[4]
¥ = ¢ ( [P),IX([P])]) (4)

where [P] and [X] are design and state variable vectors
respectively, Hence, the design sebsitivity subject to i-th
design variable Pi, can be expressed as follows:
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The first term of the right hand side of eq.(5) shows the
direct variation of ¥ under constant [X] and the second one
is the indirect variation due to the variation of state
variable with respect to Pi.

By differentiating both sides of eq.(3) with respect to
Pi, we can obtain the derivative of [X] with respect to Pi
in eq.(5) as follows:
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where '[X] represents the operating values of state
variables previously obtained from eq.(3). The derivative of
forcing vector in eq.(6) can be neglected because it
contains only known state variables, It [L][]
decomposition method is employed for the solution of eq.(3),
lots of computational effort can be saved in solving eq. (6)
because only the back substitution is needed. This is a
significant advantage of the implicit differentiation
method,
The forcing vector of eq.{6) includes the differentiation
of the first and second integrations of eq.(2) with respect
to design variable Pi, These are calculated as follows:
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The derivatives with respect to design variable Pi in
eqs. (7) and (8) can be evaluated by the chain rule,i.e.,

df(r,r’) ar ar’
—_— = - + VL — (9)
dP; aPy aPi

where ¥ and V' operate on the field and source points
respectively,

4. NOMERICAL EXAMPLES

Two exasples from electrostatic problems are considered to
illustrate nuwerical implementation of the developed
algorithm,

4.1 Shape design of insulators in power cable

Firstly, a power cable which has two-layer of different
dielectric constants is considered, The initial shape
discretized into the boundary elements is shown in Fig.1
where the numbers of elements and nodes are 71 and 70
respectively, Our task is to find the optimal shape of the
interface between insulators, where the tangential
components of electric field intensity are negligible and
the normal components become constant value along the
interface. Hence, the coordinates of the 21 nodes on the
interface become the design varisbles and are allowed to
move along the normal direction as shown in Fig. 1.

The composit object function ¥ is also defined along the
interface as follows:

} X ] Ed«2dl + w2 ] (Da - Duo)? dl (10)
14 7

where E¢ is the tangential component of electric field
intensity, Du the normal component of electric flux density,
Dno its target value given previously, 7 the interface
between insulators and w1, o2 the weighting coefficients.

If the constant elements are used in boundary element
analysis, eq.(10) can be transformed into as follows because
the uniform potential along the interface results the zero
tangential components of electric field intensity,

N
¥=1 {OI(N - $0)2 + w2(€16aj - Duo)? } 15 (1)
J=1

wvhere ¢; is calculated potential at j-th element, ¢nj its
normal derivative, ¢o average value of potentials over the
interface, 1j length of j-th element and N the number of
elasonts on the interface, The weighting coefficients v and
w2 have the value of 1 and (1;/£1)2 in order to adjust the
units of first and second terms of eq.(ll1) into that of
potential, The design sensitivity, then, is obtained as
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From eq.{5), the derivatives of state varisbles(és,én;)
with respect to design variable Pi of eq, (12) become

dé3 a3 a¢;  dIX]
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The first terms (8¢;/ aPi, 2¢aj/aPi} of eqs.{13),{14) have
no contributions bacause ¢; and ¢nj belong to the state
variables,

The variation of object function value versus iteration
nuzber is shown in Fig. 2 and the optimal shape is obtained
after 9 tiwes of iteration using the steepest decent method.
The initial and final optimized shapes of cable are shown in
Fig.3 with equi-potential lines. The distributions of
potential and normal component of electric flux density
along the interface of imu_lators at final optimized shape
are shown in Fig. 4 and Fig 5. It is shown that the uniform
potential and constant electric flux density are achieved,

4.2 Shape design of case of electrode

The earthed case enclosing the rod electrode is
considered, The initial shape discretized into the boundary
elements is shown in Fig.6 where the numbers of elements
and nodes are 47 and 46 respectively. Out task , in this
wodel, is to find an optimal shape of the case where the
normal components of electric field intensity become
constant value along the surface of the electrode.

The object function ¥ is defined as

N
¥= L (s - B ol (15)
J:

wvhere N is the nusber of elements on the surface of
electrode, 1j the length of j-th element and Eqo the
constant target value given as the value of the cylinder
part of electrode at initial shape. The coordinates of 15
nodes on the case become the design variables and are
allowed to move along the normal direction as shown in
Fig.6. The design sensitivity can be derived similarly to
egs. (12) and (14).

The final optimized shape is obtained after 13 times of
iteration and is shomn in Fig 7 with initial shape and
equi-potential lines, The distribution of electric field
intensity along the surface of electrode is shown in Fig.8
where the constant electric field intensity is obtained. It
is noted that almost of the design variables are expanded
but some are reduced. This result is consistent well with
that of previous result obtained by different algoritha{9].

§. CONCLUSION

A shape optimization method with design sensitivity
analysis employing the boundary element wmethod is
presented. The design densitivity is based on the implicit
differentiation of the discretized boundary integral
equation with respect to the design variables, The
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integration of the nes kernels that involve the derivative
of Jacobian, normal vector, fundamentsl solution and its
normal derivative with respect to the design variables is
performed numerically by using the Gauss-Legendre and
Stroud-Secret formula. The effectivess of this forsulation
is demonstrated through sowe nuamerical examples.

Finally it is found that the boundary element method is
more usefull for the shape optimal design than the finite
element method, because it enables us to advoid the
difficulties in regenerating of mesh at each iteration step
and affords better solutions on the boundary which are most
important for the evaluation of the design sensitivity.
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