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The Design of a Robust Linear Time-invariant Feedback Compensator

Guaranteeing Uniform Ultimate Boundedness for Uncertain Multivariable Systems

- Han-Ho Choi®, Dong Sang Yoo, and Myung Jin Chung
Dept. of E.E., KAIST

Abstract : In this paper, we propose a robust lincar time-invariant
feedback compensator design methodology for multivariable sys-
tems which have both matched and mismatched uncertaintics. In
order to attack the problem of designing robust compensators
guarantecing uniform ultimate boundedness of cvery closcd-loop
system responsc within an arbitrarily small ball centered at the
7ero state based solely on mcbknowledgc of the upper nomn-
bounds of uncertaintics, we usc an approach bascd upon the com-
parison thcorem which is an cffective approach in studying aug-
mented feedback control systems with both mismatched and
matched uncertaintics. Through the approach, we draw some
sufficient conditions for robust stability, and we give a simplc
cxample.

1. INTRODUCTION

Recently, the problem of designing a robust controlier
which guarantces the desired performance and stability of mul-
tivariablc systems whose mathematical models arc subject to
unceraintics has been occupicd the atiention of system theorists,
Many méamMm have attacked the problem from the determinis-
lic point of view. The salicnt feature of their approaches is the
fact that it is a dctcrministic lrcal.mcni of unccriaintics in that a
certain deterministic performance is required in the presence of
unccrtain information.

Somc. design mcthodologics have been developed in the
time domain by using a Lyapunov approach. Roughly speaking,
a Lyapunov function of a stable nominal systcm is employed as a

Lyapunov function candidate for the actual unccrtain system and
a control function is then choscn such that the Lyapunov function

decrease along every possible trajectory of the uncertain dynamic
system, at least outside a neighborhood of the zcro state. There-
fore, through that approach uniform ultimate boundcdness is
obtained for all possible unccrtaintices.[1-6]

But the mcthodologics using thc Lyapunov approach arc
bascd on the assumption that nonlincar uncertaintics satisly the
so-calicd "matching conditions” and/or the assumption that the
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actual system statc should be available dircctly and/or the
assumption that output has no unccrtaintics. In addition, in thosc
mcthodologics if the nominal systems of dynhamic systems are not
stable then a preliminary stabilization of nominal systems should
be performed. Even though Chen and Leitmann, in [4), studicd
the robustness of a controlled system when the uncertaintics do
not satisfy thc matching conditions, through their methodology
we can get only the maximum allowable bound of mismatched
uncertaintics such that satisfactory system behavior can be
guarantced for -a given controller coping with matched uncentain-
tics. Chen , in (5-6], studicd robust output feedback controticr
design for uncentain dynamical systems, but his study is also.
bascd upon the assumption that unccriaintics satisfy maiching
conditions and the proposcd design methodes are rather compli-
cated and through his methods it is too difficult to arbitrarily
design the radius of the small ball centered at the zero state
within which onc wanis 1o guarantce uniform ultimate bounded-
ness of cvery system responsc. In most practical situations,
dynamic systems may have unccnaintics which do not satisfy
matching conditions and the actual system state is not available
dircctly.

In this paper, taking account of these problems, we proposc
a rtobust lincar time-invariant feedback compensator design
methodology for multivariable systems  which  have both
mismatched and matched nonlincar time varying model uncertain-
tics. We usc an approach bascd on the comparison thcorem,
which is a more cficctive approach than the Lyapunov approach

in studying augmented fecdback control systems with both
mismatchcd and maiched uncertaintics.  According to the pro-

posed mcthodology onc does not havc to stabilize the nominal
system preliminarily. In order to make the staic enter an arbi-
trarily small ball cenicred at the zcro state in finite time and
remain within it thercafier (i.e. to guarantee uniform u)limatc
boundcdness of all possiblc systcm responscs within an arbitrarily
small ball contered at the zcro state) onc has only to shift the
nominal closed-loop poles to the the leRt of a vertical line in the
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complex planc which is determined by nom-bounds on the
uncertaintics and the radius of the ball centered at the zero staie
and/or norms involving the parameter of both compensator and
system modcl. Therefore, the control system design can be well
performed through eigenstructure assignment.

Before proceeding further, we will give some notations. 1f
x is a rcal vector, then uxﬂl, is thc norm dcfined by
lell, = (Tlx; P17 where x; denotes the clement of the vector x
and p=1,2,0s. Il A is a matrix, then JA|[,, is the induccd
matrix norm corresponding to the vector norm and i, (4) is the
corresponding matrix mcasure. Details on the nomms and on
matrix measures may be found in [7].

1. PrOBLEM FORMULATION

Let the actual plant to be controlled be represented by the
cquations

x(t) = Ax(t) + Bu (1) + ny(t.x (1))

y(t) = Cx(t) + Nyt x(2)) x(0) =x M

where xeR", ueR™, yeR” are the state, input, and output
respectively, and A, B, and C are constant rcal matrices with
appropriate  dimcnsions. Nonlincar time-varying uncertaintics
(e x (¢)) and n,(¢,x (1)) arc Carathcodory functions with the fol-

lowing known upper norm-bounds:

s x @, < By +Balixl,
@
Nz 2 @M, S Ba+ Balixl,

where B;, i=1, ... ,4 are nonncgative constants.
Without loss of generality, we assume that the triple

(A,B,C) is controllablc and observable. Supposc that only the
output vector y is dirccily available. Consider an ouiput feedback

compensator given by

v=Kyy +Kpv v(0)=vq (©)}

u=K“y +K12V (4)

where Ky, K1z, K3, and K, have appropriate dimensions, and
(3) is a dynamic compensator of order 5; OSs<n. The extreme
casc s =0 rcpresents static gain output fecdback.

Thus, our design problem is formulated as choosing the
parameters K yy, Kz, Ka3. and Ko, of (3) and (4) such that all
the closed-loop system responses of (1), (3) and (4) satisfics uni-
form ultimate boundcdness within an arbitrarily small ball cen-
tercd at the zero state.

Itl. Roaust OuteuT COMPENSATOR CONTROL.
Let £7 ={x7 v7], then the closed-loop system is given by

¥ =AY + My(t.X) Xg

- x(0) = S)
y = CF + My(t.%) Vo
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where

_ A0 gollKkuKunllco
A=190,|*|0o 1| |knknl0 1

A+BKC BK,

KyuC Kz C=(C 0 ©)
| Mmx)+BKymalex) @
nen = Kama(e x)

Ta(1.X) = Nt x)

Associaled with (5) we get an approximate closcd-loop feedback
system as follows:
i=Ax X

Let us define the transition matrix ®(¢) of (8) and suppose (8) is

asymptotically stable, then it is clear that for some finite con-
stants o0, m>0

N, < m expl-os) 120 ()]

Now, we arc ready to present a theorem which will be used

for cstablishing a robust output feedback compensator design
mcthodology.

Theorem 1. Il we choosc the control parameters of (3) and (4)

such that thc system (8) is asymptotically stable and onc of the
two following incqualitics is satisficd:

a—mpy~mp/8>0, (10)

i (A) + py + py/8 < 0, an

where § is the radius of an arbitrarily small ball centered at ¥ =0
within which we want to guarantee uniform ultimate boundcdness
of all the closcd-loop system (5) responses, and

P1 = Bi + BalIBK 1yl +1K ollip)

P2 = By + BaUIBK ylly, + 1K 24lfip)

then the following propertics hold:
1) Uniform Boundedness: Given any r € [0,>), there exists a
d(r)<e=such that II,Y(,II,, <r implies ﬂz(l)llp <d(r), ¥t 20
2} Uniform Ultimate Boundedness: Given any $>8 and any
r e [0,), there is a T(®,r)e [0c=) such that iT,ll, S7 implics
@), 3, ¥e 2T @r)
3) Uniform Stability: Given any 3>3, there is a D (§)>0 such
that [[¥oll, <D () implies e, <3, v 20

Proof : Wc can prove using the comparison thcorem (Sce
[12]), but we do not present here because of the space limita-
tions.
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From Theorem 1, it is clear that if all the cigenvalues of A
arc in the left half planc then (9) s satisficd. Negative o is equal
10 or larger than the rcal part of the cigenvalue ncarest to the
imaginary axis. So, robustncss margins arc given by the real pan
of the cigenvalue nearcst to the imaginary axis.

Theorem 1 'says that for arbitrarily B), Bz, Py, Py, 2nd §, if a
controller satisfies one of (10) and (11), then the controller
guaranices ‘uniform ultimaic boundcdness of cvery closed-loop
sysicm rcsponse within the ball (TeR*** | |¥]l, 8). Bccause
both p;"and p, of (10) or (11) arc dcpendent on the norms of
BK, as well as K5, it may not be casy to satisfy onc of (10)
and (11). But, if the upper norm-bound of output uncertaintics is
small, i.c. B3 =0 and B, = 0, then py =B, as well as py = By,
and it is surc that by choosing appropriatcly not only & but also
the gain matrices-of (3) and (4), because for arbitrary By and [,
of (2) we can casily satisfy onc of the two incqualitics (10) and
(11) without scriously caring about thc norms of the paramctcrs
Ky, and K3, we can achicve an arbitrary transicnt responsc as
well as an arbitrary good steady-state responsc of the closed-loop
system (5). The above incqualitics both (10) and (11) arc only
sufficicnt conditions. So, we cannot say that robust controllcrs
necessarily satisfy the incqualitics. From the above incquality
conditions (10) and (11), it is recommended in robust controller
design that one should choose the parameters of a controller with
minimum induced matrix norms. According to the choscn nom
and the corresponding matrix mcasure, the above sufficient condi-
" tions can bc morc conscrvalive or less conscrvative, i.c. the
sharpness of the conditions will varics with the choscn norm and
matrix measure.

Remark 1: If K3 =K1 =Ky =0, ic. the static output
feedback controtler case, then the condition (10) and (11) become
respectively o > m[Bz+ BalBK il + () + B3llBK ,,ll,-,,)l&] and
“HpA) > [Bz + BalIBK yll, + By + B3"BKII“ip),8] .

Remark 2: U K;3=K33=Ky=0, C=1, and
B3 = PBs =0, i.c. the lincar full state fecdback casc, then the con-
dition (10) and (11) are respectively reduced to0 o > m[Bz +

B,/s] and -1, (A) > [b, + b./&]. From these incqualitics, we
can sce that in the lincar full state fcedback casc there is no res-
triction of K1y, By, and ;. So, it is sure that in the lincar full
state fecdback casc both arbitrary transient response and arbitrary
good steady state responsc can be obtained by choosing appropri-
atc & and the static gain matrix Ky in spitc of arbitrarily large

unccraintics. o

Suppose both fm;(¢. )M, and [my(e %), of (2) are bounded
by lincar functions of fix|l,. ie. P1= B3 = 0, then we can show
that the following incqualitics arc satisficd:

WEG@l, S m IEgl,expl—(a—mpo)r] (12)

@M, S Woll, expl Gty (A)+p1 ] a3

Thus, the following consequent corollary on the Theorem 1 can
be established.

Corollary 2: Consider (5) with B; = B3 =0. If we choosc
of (3) and (4) such that (8) is asymptotically stable and one of
the two following incqualitics is satisficd:

o—-mp; >0, (14)
Hip(A) +p <0, as)

where

P2 = Ba+ByUIBK yyllyp + 1K 2411;5)

Then the closed-loop system (5) with B, = B; = 0 is asymptoti-
caily stable.

Proof : Immediate from (12), (13), (14) and (15). O

From the above corollary, we can scc that if By as well as
B3 arc zcro and output measurcments have no uncertainty then
wce can obtain an arbitrary transicnt responsc as well as asymp-
totic stability of the closcd-loop system by satisfying easily cither

(14) or (15) without any restriction of B, and thc noms of
controller parameters. The incqualitics (14) and (15) are similar

to the results of Chen and Wong [8), Sobcl er al. [9], and Zak
[10]. Becausc their resplts are reduced to thc‘spccial cascs of our
results, we can say that our results arc gencral oncs.

From the preceding analysis, differcnt controller design pro-
cedures can be established. And from (6), it can be scen that
compensator design problem is cquivalent to a static output feed-
back problem, which has been treated by scveral authors. Espe-
cially, Kwon and Youn, in [11], drew the nccessary and
sufficient conditions for cigenstructure assignment by output
fcedback and gave a simple procedure for cigenstructure assign-
ment by output feedback. In order to guaranice uniform ultimate
boundcdncss of all possible sysiem responscs within an arbitrarily
small ball ccnicred at the zero state onc has only to shift the
nominal closed-loop poles to the the left of a vertical line in the
complex plane which is dctermined by nomm-bounds on the
unccraintics and the radius of the ball centered at the zero state
and/or norms involving the parameter of both compensator and
systcm modcl. Therefore, the control system design can be well
performed through cigenstructure assignment by output fecdback.

IV. EXAMPLE
To illustrate the preceding results, we give an example,
Example : Consider the following dynamic system:

™
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0.5x3c0s (x3)+0.1cos (up) 5
+ | 0.5sin(x3)+0.1cos (u,) Xp= =5
{O.Szlsin(uz) 5
-1 00 ~{.1sin(xy)
Y=1010)* | 01xpsintuy)

Find a robust static gain output fcedback controller which assurcs
not only that every closed-loop system response x(t) will reach
exp|~1] times xo within 1 scc, i.c. the time constant is less than
1 scc, but also uniform ultimatc boundedness of every closed-
loop system response within the ball of {xeR> x|l $0.05}.

Solution: From the -above dynamic cquations, wc get
Myt x (il < 01405kl and (e x (@Ol < 0.1l ic.
B;=01, B,=05 p43=0 PBy=0.1

assignment by output fcedback, we get a controlier as

[ s

then o (A)=~3, W (AX py + pd = 3 + (05 + 0.1x4 +
0.1/0.05) = -0.1, and the following incquality holds:

Using cigenstructure

fx (). <4.95¢xp[-2.121+0.05, V120

Every system responsc will reach exp[—1] times xq within
172.1 sec. The design specifications are satisficd.

V. CONCLUSION

In this paper, we proposc a robust lincar timc-invariant
compensator design methodology for multivariable systems which
have both matched and mismatched nonlincar time-varying modcl
uncertaintics with known upper norm-bounds and our analysis is
restricted to uncertain dynamical systems where the nominal sys-
tems arc lincar timc-invariant. In order to design a robust output
feedback compensator guarantceing unii‘orm ultimate bounded-
ness of cvery systcm response within an arbitrary small ball cen-
tered at the zero state, we use an approach based upon the com-
parison thcorem which is an cffective approach in studying aug-
mented feedback control systems with both mismaiched and

matched uncertaintics. Through the approach, we draw the
sufficicnt conditions for robust stability, and we give a simplc

cxamplc.
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